
D-A12 41 INPROVING THE PERFORMNCE OF RI LGORITHS(U) ABURN= 1/2

tNIV AL DEPT OF COMPUTER SCIENCE AND ENGINEERING
M PANCAKE SEP B? SCEE-PDP/85-48 RADC-TR-87-131

UNCLRSSIFIED F30602-81-C-O193 F/ 12/9 NL

7-IMPRVN

H MLH l

mhlhhhlhlhElmI
EIIIEIIIIIEII
IhIIIIIIIIIIIl
mmhhhhhmhhmhl
mllEEElllllllEE

L. 136 111H1Lo

liii' "

6 1111125 1 _____U__ __111
!liii U,,,, ,

S- MICROCOPY RESOLUTION TEST CHAR1

%%

4.

e

eV.

5'". . . .'p." .v - - " - '..% '." ." .% " ." v '. ' -" . % 7" '''- " " . .'-% .' - "

S-- . , , ia -- r.- r. ' . - - . -,

€o FILE, .COPY .
00

RADC.TR-87-131 F EC'(

Final Technical Report
September 1967

IMPROVING THE PERFORMANCE
OF Al ALGORITHMS

Auburn University d L I I I.

mMAR25

Sponsored by ft.
Strategic Defense Initiative Office

APPROV FOR MUM AM 047R1W LAIwr TED

The views and conclusions contained In this document are those of the W'_
authors and should not be Interpreted as necessarily representing
the official policies, either expressed or Implied, of the Strategic
Defense initiative Office or the U.S. Government.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

88 3 25 028 0

'.

%,

IMPROVING THE PERFORMANCE OF Al ALGORITHMS

Cherri M. Pancake

Contractor: Auburn University
Contract Number: F30602-81-C-0193 -.

Effective Date of Contract: 15 May 1985
Contract Expiration Date: 30 April 1987
Short Title of Work: Complex of Al Algorithms Program
Period of Work Covered: May 85 - Apr 87

Principal Investigator: Dr. Charles R. Vick
Phone: (205) 826-4330

Project Engineer: Mr. Donald J. Gondek
Phone: (315) 330-4833

Appproved for public release; distribu.ion unlimited.

This research was supported by the Strategic Defense S
Initiative Office of the Department of Defense and was
monitored by Donald Gondek (RADC/COES) Griffiss AFB NY
13441-5700 under Contract F30602-81-C-0193.

%," "

',, .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OMB No. 0704-018-

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
KI/A Approved for public release; distribution

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

SCEE-PDP/85-48 RADC-TR-87-131

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION , -ld

Auburn University (if appiable) Rome Air Development Center (COES)

6c. ADDRESS (Cfty Stott, and ZIP Code) 7b. ADDRESS (City State, and ZIP Code)
Department of Computer Science & Engineering
107 Dunstan Hall
Auburn University AL 36849-3501 Griffiss AFB NY 13441-5700

go. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic Defense (if applicable)

Initiative Office (SIMO) F30602-8l-C-0193
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Office of the Secretary of Defense PROGRAM PROJECT TASK WORK UNIT
\:as; 1c 20301-7100 3 NO N%4 13 N65 CC E AtN.

11. TITLE (include Security Classification)
IMPROVING THE PERFORMANCE OF Al ALGORITHMS

12. PERSONAL AUTHOR(S) .

Cherri M. Pancake
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Final FROM V TO _ September 1987 120

16. SUPPLEMENTARY NOTATION . " e"

Graduate research assistants who contributed to the preparation of this report: Laura F. Henry, Paula S
Utter. Greeory K. Whitefield

17. COSATI CODES 1. SUfIfiT TERMS (.n rtnue on revere f necese and kbntify bybk numbero) ck .j .i-
FIELD GROUP SUB-GROUP Artifcial Intelgence (Al) Algorithms, Improving Software .' u-

12 05 Performance, Program Behavior, Predicting Performance, %
12 07 1Optipization. Programming L&.auaOeg . A, Software- (rLlnt'e)-,

19. ABSTRACT (Continue on reverse If cery and identify by blo& numberYQ, (rLr I4 I ' Li GA1;-, G 4c-j,"
--- The feasibility of improving the efficiency of A,{software using available systems aiid methodo- %
logies is addressed. By modeling program behavior as a series of concurrent problem solution systems, .,% 4%e %
it is possible to isolate the inefficiencies inherent in the implementation scheme for those due to
conceptual difficulties or inadequacies in the underlying physical system.-

>The processing environment selected for the implementation of A[software effectively estab-
lishes a computational paradigm which shapes the development and ultimate performance of any
program executing within it. Sequential environments view the underlying architecture as von Neuman . p
and approach a problem in terms of the Turing Model of Computation, while applicative environments , -
exemplify the recursion theory approach. Established optimization techniques are intimately tied to "
the computational model and cannot be transported from one environment to the other with ease or
efficiency. (Cont'd) .-

*- % ' ,

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED/UNLIMITED 3 SAME AS RPT 0 OTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
L AD .GONDEK 335 13-R ~r" -:

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

9. 'i, L% .%

u 'x.. UNCLASSIFIED

19. (Cont'd). Programming Language Techniques ''

19.(Co t" 'Si ceso e Al t s sare inherently sequential and other~s inherently recursive, no single
Sprocessing system can facilitate uniformly optimum performance. The concept of "environment spanning" AL

is suggested as a means of maximizing program optimrizability by allowing the assignment of subproblems
individually to whatever processing system) offers the best chance for automatic improvement. Three
mechanisms for implementing spanned environments are presented: parallel environments, multitasked~~environments, and intersequenced sub-environment modules.

, 7 L, r1(P B

.rj:,,..%,%

10 t

UNCLASSIFIED

' ,

Contents

List of Figures iv

I Introduction I

2 Implvnentation of Al Algorithms 6
2.1 Fundamentals of Program Behavior 8
2.2 Predicting Performance 11
2.3 Improving Performancp 16

3 Limitations on Potential for Optimization 23
3.1 Structurfe of the Implnemntation Solution Svst(Yn 27
3.2 Characteristics of Sequential Processuing 33 --
3.3 Optimization in the Sequential Environment 37 ,
3.4 Characteristics of Applicative Processing 41
3.5 Optimization in the Applicative Environment 47 <

4 A Strategy for Maximizing Optimization Potential 51
4.1 Evaluating Processing Environments 52 0
4.2 The Environment Spanning Strategy 57
4.3 Environment Spanning Implmnentations 62

5 Conclusions 69

References 72

Appendix A. Optimization Techniques for Sequential Environments 74
A.1 Typical Optimization Techniques 76
A.2 Potential for Optimization 82

Appendix B. Optimization Techniques for Applicativ Enviroivw.nents 90
B.1 Typical Optimization Techniques 90
B.2 Potential for Optimization 94

-.

0

-
-

"

List of Figures

Figure 1 Program Performance Modeled as Concurrent Problemn
Solution Systems 2

Figur, 2 Predicting Program Efficacy 9

Figure 3 Pr#Aicting Program Ffficiency 14

Figure 4 Five Cowmmon Optimizing Transformations 20

Figure 5 Implfrnetation Stages at Which Optimizing
Transformations May Be Applied 21

Figure 6 Abstract Machines in the Implementation Solution
Systwn 29

Figure 7 Programning lAnguage "Hierarchy" 31

Figure 8 System Support Layering in Sequential Processing
Envi ronrmnts 35

Figture 9 Sytem Support Layering in Applicative Environments
Hostfd on Squential Processors 44--.

Figure 10 S.stemn Sunmprt Layering in Applicative Environments
Hosted on .4n-Sfquentlal Procesors 45

Figure It Gabriol 's Tak Bechnmric Cnmparing LISP with

Pronrplumrl Languages 55

Fiire 12 Envirorunnt Spanning Using Parallel Processors 64

Figure 13 Envtrnmunt Spanning Using Multitasked Processing 65 ...

Figur 14 Envirornment Spanning Using Intersequenced Modules 67 % %

Figure 15 Examples of Fxpression Simplification Techniques 78

iv

0

.~~~~.

%

Figure 16 Examples of Code Rearrangement Techniquos 80

F i g u r e 1 7 E s t i m a t e d E f f e c t s o f O p t i m i z a t i o n 8 6'e %

Figure 18 Anklam's Benchmarks on the Effects of Optimization 87

Figure 19 Wulf's Quantification of the Effects of Optimizing

Techniques 88

Figure 20 Gabriel's Benctarks on the Effects of Optimization 95

,% .%*% .U

V

.".' r b '%

%p .'vS

:% e

1 Introduction

The complex interrelationships of computer systems within the

BM/C 3 setting impose stringent requirements on their performance.

They must reliably produce correct results within a minimal period of

time and without exorbitant demands upon external resources. At the

same time, they must be capable of flexible and dynamic response to

changes in the processing environment, adapting quickly to fluctua-

tions in communications, threat assessment, res(orce availability, and

so forth. This need for intelligent and adaptable behavior indicates

that the integration of artificialintelligence algorithms may provide

significant enhancements in the behavior of BM/C 3 systems.

The history of poor performance demonstrated by past AI systems

has made real-time behavior an issue of concern. Can optimization

techniques be systematically applied to Al programs in order to bring

their performance up to real-time standards? Woes any suich improvm- .

ment presuppose the development of new hardware and/or software capa-

bilities? The present report discusses the feasibility of optimizing

Al algorithms using currently available resources and methodologies

and proposes a strategy for maximizing improvement potential.

The issues involved in optimizing Al programs can best be

understood if we model the performance of an AT algorithm in a

real-time situation as a serips of problan solution systems opprating

concurrently at different levels of abstraction (s,,e Figure 1). At _

'r1 w.-

* 5'*

' .. ,. , T; 2 ; _===,,. .. ,, ... ,.,.. , .,... :. . ., ,.. ... ,, ... ,........,.,..... ..

-6

@'

Problem Solution

Logical level Description System

i:. ' -* ' -

Logica levelDescription
Syse

interface Implementation System

Physical level Execution System
_--..--.

Figure 1. Program Performance Modeled as
Concurrent Problem Solution Systems

:-...-.

S..--,*

'V..'.P

2

JM.
0

the highest level is a logical description of the problm and the

steps required to solve it. At the lowest level is a physical system,

the architecture configuration executing tho s(lition. Between the

two lies an impleentation system which provides the interface between

logical conceptualization and physical reality.

An Al algorithm can he optimized at any or all of these levels.

The logical system is improved by devising a more efficient conceptual
solution to the problem. This may involve a decrease in the amount of

processing required, as is the case with the development of search

tree pruning techniques, more effective heuristic functions for

evaluating progress toward a goal, or methods of minimizing the ne.d

for data retrieval. The logical solution may also be streamlined by

the development of faster processing techniques such as improved 0

methods of discrimination or better data structures for problem
%

representation. %

The execution Soltion system is improved by enhancements to the -

physical resources. The architectural configuration processes each

operation by first analyzing the memory, processor, and

interconnection network elements requirsed and then controlling thfe

sequencing of those elements. Improvements include the use of fastpr

processors, lookahead control capabilities, and configurations

allowing speedier data retrieval, as well as the most obvious

enhancement, the distribution of execition over a s,-ries of parallel.

processors.

The intervening system, the implemontation, sorvos to bridge the S

3 *.

- - - -,~ .. ,.. S * .,-

semantic man" h-tween the exprf!ssion of the problem as a set of

conceptual relationships and as a series of operations to compute

those relations. A certain degre.' of inefficiency is, of course,

inherent in any situation where a logical solutior must hf, mapped to a

nhysical one. By viewing the interface system as a separate entity,
r

however, w, can attnpt to improve its transformations as a means of

generally enhancing the nerformance of the algorithm. This process

involves isolating those aspects of the description system which have %

most impact on execution and establishing a means of minimizing

transformational in-f ficencies. 0

Most recent research efforts in the improvement of AI programs

have bNen devoted to the dscription and execution solution systems.-NO

The current study addresses the feasibility of optimization at the S

imnpementation system level by exploring the logical/physical

interface and its performance implications. Chapter 2 presents an

overview of the implementation solution system and describes the

issues involved in assssing and enhancing program nerformance. This be

establish(s a lrondatton for the next chapter, which discusses the

limitationq imposed by the processing environment and presents 0

comparative, studtes of program optimization in two general

environments, sqtuential arid applicative. Chapter 4 introduces the

concept of environrment spanning, a strategy which seeks to maximize .- 9

the "optimizahilty" of AI algorithms by partitioning programs into %

segmonts for cnrritnated processing in a heterogeneous envirorment. A

fina! chapter snmiarizes the conclusions of the study. The appendices

4 %

16~ -e NON %° . ~ . ' ".m

provide supplementary information on optimization in the sequential -.

and applicative environments by cataloging the optimizing trans-

formations typically applied in each and summarizing ,mnirical studies

of the effects of optimization on program performance.

% %

% ,'. ,

.. .-. j
% P%

-ep I

% VP %' if.

2 Implementation of Al Algorithms

Theartificial intelligence algorithms developed for battle

management applications are subject to strict prerequisites. They

involve not only an unusual rl-gree of nunerical cmnputation, but also -

rigid performance constraints imposed by the real-time nature of BM/C
3

systems. Al programs in this setting are sophisticated and often

large- in scale, requiring extensive supplementary databases which

guide inference and discrimination systems or assisr J.t calculating S

heuristic evaluations of goal proximity, resource adequacy, trajectory

fit, etc. The size and complexity of these programs rei.gates them to .,:

a long-term development framework. This has the effect of imposing

:%#,
the additional restriction that the nature and amount of processing

%.

required be predictable, at least to the extent that there is some , %-.

assurance the algorithm can eventually perform in real-time

situations. It must be possible to simulate or otherwise analyze the

selected implementation strategy, predict the impact of external

system conditions, and guarantee that perfomanee can meet stringent 0

time ce:nstraints.

As outlined in the preceding chapt3r, the implementation system

provides an interface between the concptualization of the problem •

solution and thp hardware-specific i)rocessing. It encompasses a

number of levels and types of elements. including the goals and

subgoals selected for the Implementation, the programming language in
'01

6

7- , ".-J

which the solution is expressed, the translating systems used to map

the program to target machine instructions, and any run-time environ-

ment layers which isolate the user program from the hardware. All of

these influence run-time behavior, but the nature and extent of their

effects vary significantly.

The feasibility of performance improvement in the implementation

system depends to a great extent on two factors: (1) the ability to

accurately predict system performance, particularly in the sense of

identifying those features responsible for degradation; and (2) the

capability of applying some sort of optimizing transformations which .

enhance the predicted behavior. This chapter addresses these issues ,

by examining the general nature of program behavior, behavior pre-

diction, and optimization techniques. System characteristics which •

impose limitations on the extent of program improvement feasible

within an AI framework are then presented. _

Certain assumptions have been made as to terminology. The term

translator refers globally to system software which maps a program in

one language (the source) to another (the target). These include --

but are not limited to - compilers, interpreters, macroprocessors,

and assemblers. Similarly, a translation is any mapping from a source

~*% 6"
to a target language, typically a one-to-many transformation (i.e.,

from a "higher" to a "lower" level). Implementation is used in

reference to any activity within the implementation solution system;

where no ambiguity results, the terms program and implementation .1-.** ,

system appear interchangeably. Finally, behavior and performance are S

-7...'.

. " .- " ' .J'. ' _.-.-'.'s ' e s-./., e.'. .¢. ' ~e. -
-.. '."e'.'.-.-'." ..- '- " .- * '-

used synonymously t,- describe the observable aspects of execution such

as speed and resource utilization (as opposed to non-observable

,q. features such as fault tolerance and correctness).

2.1 Fundamenzals of Program Behavior

Although the notion of program behavior can obviously be

approached from a number of viewpoints, it is convenient for our

purposes to group the elements of the implementation solution system

into two classes. The first includes those factors relating to th,

processes by which the system is establishvd, while the second

encompasses those influencing the way in which the mature system

behaves. A corresponding distinction is drawn bc.tween efficacy and

efficiency as performance metrics. 0

Implementation efficacy measures the "effectiveness" of the

system: an effectual program correctly produces the desired effect

(without regard to exactly how the effect is achieved). Efficacy is

determined from the processes used to create the impl,,nentation rather

than from consideration of the way in which it functions.
*10

The evolution of an imrplcmentation system is typically viewed as

a sequence of phas:.-s (.. Fig u e 2'. the definetion of requirements,

e-stablishing rf specifications, drsign and development of the source

program, and translation into target form. Each transition from one

phase to the next rrquirwv, an expansion of the problem representation
'.c"

from a relatively abstract to & mr concrete level. As sociated with ,.-

#, . .

, %--'..."

U' *A *U-,. * *qP..•.* .~* * ~ .. - . -

'V

-S

Requirements]

Validation Issues

[SpecificationsO

Verification Issues

Program Design

Language Effectiveness

Source Program 'r',

Translation Effectiveness ,,*--

Target ProgramJ

Correct Input Correct Output,. -. ,

Figure 2. Predicting Program Efficacy

"T.-.",

.P S.

each expansion is a series of constraints intended to guarantee the -s

fidelity and reliability of the mapping transfornation. The con-

straints impxsed at early phases of development are generally vi.ewed

as issues of validation (des the implementation jo what is intended?)

and verification (does it produce the effect correctly?). Efficacy

factors such as these ar- of major concern in software engineering,

but are beyond the scope of the present wotk. •

The selection of a source language and the translation of the

resuilting program are relevant to any discussion of performance

improvement, but in terms of efficacy their influeno i- difficult to $

measure. For reasons which should be obvious, subsequent sections

assume that: (l) the implementation languages select,1 provide for a

suitable representation of the algorithm; (2) the program faithfully 0

describes the problem solution; and (3) the translators available

provide adequate and rel table mappings from source t) object code.

In contrast to efficacy, implementation efficiency measures

solution competency: an efficient program executes the task with a

minimum expenditure of physical resources (without concern for whether

or not the task correctly solves the problem). Efficiency issues,

therefore,deriv, firn the manner in vhich the implementation functions

during program execution.

The behavior of an implementation system can be characterized as

a hierarchy of abstrhct or virtual machines representing logical

levfls of ftinctionality (described in detail in later sections). The

interface between one machine and the next consists of a one-to-many S

"CJ
to

k

,, .- % " . '.

% 0,

.

mapping between instruction sets, with the final or lowest interface -

providing a mapping to the machine code of the target architecture.

Implementation efficiency is a composite measir, o the efficiency of

all these interfaces. It reflects the appropriateness of the target

architecture to the task, as well as the adequacy of the transforma- .

tions.
" , .1*

2.2 Predicting Performance

The developer of any real-time computational system makes an

implicit assumption that behavior can be predicted prior to program

execution and that efficiency is not only an attainable, but also a

measurable goal. It should be noted that execution-time behavior in

itself may not be a sufficient criterion for assessing program %

performance. If the program forms part of a complex software systom,
additional factors such as reliability, maintainability. modifia-

bility, and transportability must be taken into account; in some cases

these requirements are in direct conflict with the goals of efficacy

and/or efficiency.
%

A program's behavior can be characterized on a variety of .i.v...

levels, including execution speed, amount of memory occupied by

program instrctions, data storage requirements, number and type of

operations performed, need for exclusive access to shared devices, and .

Ir %.P611 ref ee '011
A 'et

•
',." , 'p

i J I{ l I|r -- -

-. % .or- -~ ~~ - . .

so forth.1 Such measures are difFicu t to quantity and tend to be

distressinglv sensitive to spec:ific run-time condi.ticns. In gen.ral,

however. they may be categorized as influenain. three facets of

program efficiency: conciseness, speed, and thioug:-ipuL.

Concigr.ne-s meas-ires the main and auxiliary mrnory space re-

quired by the program for both code storage and data representation. %

A program maximizes conciseness by occupying a minimal amount of

space. Speed provides a sinilar metric, expressr.d in tenus of the

amotnt of time required for processing. ,.rine this is influenced by

howy much of thf, prcgrarm is resident in main memor, -, us how much •

must he swapped in and out of aiixiliary storne, conci.-.(ness and speed %'%

are inextricably related. The third facet, t h;'ouigpu , assesses

program productivity or output vis-a-vis input. This measure is

inversely related to the ,,umbrer of interrupts nausing the suspension

)f program execution. Although somewhat related to speed (a slow .

program is more 1 ik,;ly to be interrupted tha.n a fast ore), throughput

is more r presrntative of external factors. such as the program's

requirements for systfn rcs.urces, file structure ind data redundancy,

or availa,'e err'-,)r inr fclities. r•u

Althoug.h he ntlr. of conci sfl~s,, spe,-J, ,ad thrxughput areI , - . . ,. ,

e.sily understood thour ,-valuttion is dtificult. The crux of the

I Th,, dist; ctior' are r)t alway,.; 'lear; some program envi- %

, ronmpnts, f-r rexample, 13 noL differeLiat(between program data
" (instruction , and probl. data (%'arlabi- storage). For purposes of

claritY, th'-;, tz,:,i" .qri doferred until later chapte-rs.

12

~%

I .- ~ ,,. s'~~.-.~~'

problem is the identification of suitable standards for testing

efficiency. A software developer needs to predict the behavior of a

proposed implementation assuming it is designf"d ar:4 (,arried out with

"average" programming skill and is executed utilizing "avrag&" data

on a system running under an "average" load. The use of the criterion

"average", however, while perfectly natural to the human designer, is

often a statistical impossibility in terms of the computational

system. The assessment of program performance is commonly reduced to '

a discrimination process which selectively isolates specific examples

(benchmarks) from the program solution space, further restricts those S

examples by the application of selected input (test cases), and

executes them under selected system conditions, often simulated (se_

Figure 3). The resulting measurenents are at best a rough approxima- S

tion and at worst a gross misrepresentation of real-time conditions. -

The selection of test programs commonly .ntails the use of an

evaluation suite. This may be composed of task-specific, application-

specific, or naturally-occurring benchmarks, or any combination of the .

three. Task-specific benchmarks, which isolate particular and

presumably typical program activities for individual measurement, are S

the performance evaluator's version of unit-level testing. Although

they can be a valuable source of data on speed and throughput,

task-specific tests are often misleading becaust' they cannot reflect

system interactions or load conditions. Furthtrmore, they are

inordinately susceptible to "edge effects", or th, non-representativP %5

results which occur when a program slightly exceeds or barely misses 0

13

-.. , -' .

i .
5

I.Prograrn Spacj

~~ ~ Test Progjram Selection ~

-ilk-

Program Unit Goo Proram Unit1
r %

Test 'ata Selection

Program Run seProgram Run] Program Run

System Load Issues[I s. ,o ,oo,,, oe

Conciseness Speed Throughput . ,.

Figure 3. Predicting Program Efficiency

*. ,t%%,t

I jr
14- 1"°

. ' -;.: %

.. % ,

critical limits (such as memory page size or I/O transmission bounds). -i

To a certain extent, application-specific henchmarks, which ,

attempt to provide more realistic measurements by --xeling the pro-

posed solution on some reduced scale, compensate for those drawbacks.

They are prone to the biases typical of any modeling situation,
%,,, , ,

however, notably oversimplification of thfe problem and the failure to

accurately portray the effects of system load. Since they execute on

a reduced scale, there is also a tendency to atypical behavior, such

as a distorted view of initiation versus execution costs.

Naturally-occurring code may also be selected for benchmark 0

analysis. In this case, existing programs which solve related prob-
,%

lems are utilized in an attempt to approximate "roal-life" processing

conditions. Although these are somewhat better than other benchmarks

in reflecting the effects of system load, they are often biased toward

a specific problem or implementation system. They are also more %.

likely to reflect individual levels of programming skill and/or _

system-dependent optimizations.

Occasionally, criteria other than benchmark suites aro used to

assess program behavior. The most common approach is to evaluate the 0

mappings which provide the interface from one abstract machine to the

next by identifying the number and type of instructions generated at

each level and ultimately quantifying the time rcquired to executo the

physical machine instructions. The primary drawback ot this methodo-

logy is that it cannot adequately reflect external run-time conditions • * %

influencing program behavior, such as system load, resource contention 0

15 ,*

%

problems, and communication blockages. Like task-specific benchmark -

tests, this type of measurme.nt is also susceptible to edge effects.

It is obvious that no single methodology for evaluating program

behavior accurately portrays the interrelationships aniong conciseness,

speed, and throughput. The assessment of program behavior is still a

black art, and few guidelines are generally applicable. These caveats

should be borne in mind when later sections disc ,ss the results of

bencthmark analysis.

2.3 Improving Pprformpnce -

,. %

The performance roqiiiremcnts inherent in real-tume craputation

systems have engendered a widespread interest in tho uevelopment of

techniques for program optimization. In general, optimization refers
%.,

to the transformation of a program implementation in order to improve

its execution-time performance. The term is often applied loosely to

any translator which makes a significant effort to generate efficient

target code; it is, however, better applied to specific attempts to

rearrange or alter program operations so that the target program is 'VV

more effiCLent than that gRn-rated by a direct translation.

The term optimi-Ation Is nislIFading for several reasons. First, %. %. /
'.' .<',

V4.

the notion ef optimality is imprecise. No known metric suffices to

describa hohavior dyn'unics and, as indicated in previous sections,

rprfnrmwnan. in it;'lf may not be a uitable criterion for evaluating

program "gryneq.z. Rirthermore, the term optimization implies that a %

w . . -. ,

16%

%

% P
-* ,'% -,5'

unique optimal solution exists and that it can - recognized as such.

This is extremely unlikely, in view of the, complex interrelationships

among individual performance characteristics; optimizing transforma-

tions can rarely be applied without ambiguity, and the improvement of

one aspect of a program's behavior can have adverse effects on others.

Finally, most existing techniques are applied on the basis of pre-

execution program analysis, restricting their activities to those

portions of the program which are not overly dependent on run-time

values. "a/st

In spite of its inappropriateness, however, optimization is the 0

term most generally used in reference to pertormance improvement. The

present report will use the words optimization, improvement, and

enhancement interchangeably, with the understanding that they repre-

sent a relative rather than an absolute goal.

Central to the idea of optimization is the concept of program

equivalence. Since any number of programs can be devised to produce

identical run-time results, the goal of program improvement is the

4 generation of the most efficient means of achieving the desired

results. Optimizing transformations thus represent automated attempts S

to improve upon the programer's description of tho algorithm. Such

alterations are important in order to compensate for the inefficien-

cies inherent in the use of high-level languages, which often suppress 0

those details of the object language having most influence on program
'. .'.W

performance.

V

17WNo

N. . J1 d'• .. , .. - , 5_ . . , - .% . . . - ".. "

-. %,

The implementation of program improvements presupposes the -

formulation of a set of trvnsformat ions which will produce a program

equivalent to the original. Each such transformation is described in

terms of the relationships between program elements which are

necessary preconditions, in combination with a mpaning-preserving

transformation rule. Any co)nstraint. governing the order of applying

transformations must a'so be supplied. The situation is complicated _9

by the fact that relatively few optimizations are finite. If a

transformation can be repeatedly applied without fevpr reaching a point

where it is no long;er possible to apply it, artificial boundary 0

conditions must be established to terminate the process. Additional

safeguards may need to be instituted in order to pro,.,ent conflicts

between individual transformation rules. 0

The concept of meaning-preserving transformations can most .40

easily be understood by viewing the execution of a particular program "e4Je

as a sequence of actions (A1 ... An). For reasons which will be made

clear in later chapters, these actions shold be considered abstractly

and not equated with program instructions; since each program action

is explicitly represfentd, there are no control constructs (e.g.,

branches. l()pp, etc.) ir this r,prese,-tation, Fiure 4 illustrates ".

the application of five c-rmnm nly applied ontimizing transformations to

such an executio, seqluence. Note tat scme of the improvements may be r-

contradictory. For example, the replacement of an action by a faster

equivalent may incrpasoc- program storage, space as it shortens execution

tim , '. Similarly, the elimiiation of redundant calculations saves time -

18

. S-..::.
. 4."-

~ ~ ~ %~ V. . ~ J 4~* . 4 °- °,"

and program storage but may increase requirements for temporary data -.

storage.

Improvement strategies can be classified accoring to a variety

of criteria. As indicated in Figure 4, it is cr7)fn to group trans-

formations according to the type of improvement effects (e.g.

reduction in execution time, reduction of instruction storage, re- %

duction of data storage, reduction of I/O interfaces, etc.). Other

categorizations are based on technique applicability (machine depen-

dent or independent optimization), scope of improvement efforts

(local, global, interprocedural, etc.), number of applications (finite

vs. infinite transformations), and of course the particular type of

technique used (e.g., expression simplification, code rearrangement,

operation frequency reduction, peephole optimization).

An alternative approach is to view optimizations in terms of the

implementation stages at which they are performed (Figure 5). Source- ,-

level transformations are applied by a preprocessor which generates an

altered version of the source program, allowing machine independent
, .

(but language dependent) improvement strategies. Object-level

transformations, applied by a postprocessor to the machine code

generated by the translator, are conversely machine dependent and

language independent. Most current implementations of optimizers,

however, are incorporated in compiler systems and operate on some 0

intermediate form of program representation. The transformations are

of varying degrees of language/machine dependence, according to

whether they are applied during the syntactic analysis, semantic S

19

0
d" .

- .J

. ,,." .-

Xi S
F1

- ;-I K
2 I''-

.,.-..-*.
H,*, .

-i d)(L.0

. - .P

% I

aN,

Pre-Translation SOR PROGRAM
Stag

Mt Preprocessor

~Lexical and Syntactic Analyzers

PARSE TREE

.'Semnantic Analyzer....

TrnlainINTERMEDIATE CODE 4

Stage 4
Code~ Geerto

OaJEC COD

Postproc..s,

Post-Translatio
EXEC~rABL-.COD

Staget

pt-Traslin [rnfrain MayBeAppie

Stag L EECUTBLE ODE1

attribution, target., exiep gereration. or p&: pole ozitimizat.,fl l'ast -

s;tate ot code -. ,neration) phaz-'.

To ho. of t e , i vc, an op t imizn cion -kchnry ruist I T*F I I .' -

pryovrd perfornanro in il rS):ssi:ifv eP(Cutiow. l l o' cha3ngp

-i thfer proprahI bf havijor or ros'i I i vzn i it i'ri ah!.Iormna IV

tcrmi nated. Ina-dto;i hould bfe ('(*,t f "ti -1 17 t- r.ofte

tim- roquirvd to ~prtorm thc. trans ornFtioin comparec to the exccu-

tion-tune improvrinient which will be reaizod. Although ideally it
a %

-4ho~t1d] be possihle to apply transformaticons c-)n-;'-cuti-.ely with no

amnhinuity or conflic!., ira practice most cmrv~n1:)niques are

complex, of oincertaii, duration, of limited applicshility, and often

contradictory in nature and recnilts.%

5 %

% %1

%5 _o%

oft. OL

L, k9.Y. Y W , '.', X. '2 W V ,L-,1 j i. W _ .'W : w u.. V-. . - -. : -

%.

-6
V .r "m.6

3 Limitations on the Potential for Optimization

Although the nature of optimizing transformations poses some

inherent difficulties, the greatest obstacle to program improvement % %

stems from the manner in which the implemntation system functions

during program execution. The descriptive solution syst m specifies a 5

problem by defining a series ot roltions (among, for example, input,

output, sub-problem solutions, inferential systems, and solution ,.

goals). Within the execution system, the same elements have been -

reformulated in terms of the ways in which the relations are computed.

In providing a logical/physical interface between these systems, the

implementation establishes a general paradigm or tramework within- -t

which the solution is expressed. Since this paradigm effectively

creates an environment guiding processing activities, it will he . .

referred to as the processing environment.

In this chapter, two general processing environments, s qu.mtial

and applicative, will be contrasted. As their names suggest, the most

obvious distinction between the two is the notion of program control ;..

this is not, however, the only point of differencs-. Fqually clt-ar

distinctions can be drawn on the basis ot such features as the

relative importance of data definition versus data manipulation in

describing the implem(ntation, the meaning ot program symbols, the

moment at which properties are hound to them, and the- number and type

of interfaces which are layered to torm the imlomentation systm. 0

2 3

-,4"-,"

%

A soql'intial processing envir.-n.fnt vie', tho underlying archi-

tocturp as a traditional von Neumann machine. This do(s not necessar-

ilV moan that tho pr~cresor controllirg exocution i..z sequentill, but

simply that the problem solution is uescrib, I in tfnms of a sequence

of steps to h, carrird ryit in a determinci order. Historically, most %.

views of compu.arior. hawvr been based on the notion ot instruction

sequencing and by far the majority of existing sysnems operate along

these lines. As a nitural con.msltfflnce, most sottware implementations

mRrkf-u- of('0 thi-s prrK-f-sing t-riirorinent.400

The natu r-' -zrquent ial prc,,sz r'g presy,.p z, a a relatively

constrained repre-sontation ot the problrm soluti)n describing its

progression from start to finish; a program is there",,', expressed in

terms of a sprieq of operations which manipulatfe data. For this

reason, most programming langluages designed for a slquential environ-

mont are called "procedural" ,l "algorithmic", or ' im-rative". They

Provido Reneral data formatting capanilities as well as high-level

v,.rsions of the lrynentarv control qrxeuences available on von Neumann i**

sarchitecturos, su,-i ,s r-petition, s.l<ction, branching, and inter- '%

sqiencing (sihprgrar linkte). Altho'zgh the sertions on sequential

procos.i ng occa .i)Ra; I v inak e f-- f, ernce ;.() !7!.T-ccific language . -.

*-mplrnenta'i,)rs, this., is for il,'-:trative pur;oses only. The

similarities, aTY)n procedural langa*(-s and soqtintial implementations

1 The ,iseo f "proceaurn" in retz:rence to a sub-program unit thus
derives from the term "pt,-dural" (i.e., sequntial) describing the . .
nature of program slv'ificaticn. S

24 %% %

-
d **_ _ o'-',--, --' -e%

J1 -,--..

are so fundamental that they may be viewod as essentially homgneous -s

in terms of their implications for program optimization.

Although most existing systems are sequenti'" in nature, A[

programs are typically implemented in an applicative or non-sequential

processing environment. This type of environment does not view the

underlying machine as a von Neumann model of computation and therefore

is not suited to the same types of optimizations. Whereas the

sequential environment approaches execution as a discrete series of
r % v 16

"%_w.

algorithmic steps, non-sequential processing revolves around such

concepts as reduction, resolution, and unification. Again, this does •

not imply anything about the nature of the processor itself. In tact,

since the majority of existing computer systems rely on sequential

processors, most applicative processing environments are superimposed ..

on sequential implementation layers. It is only with the growing "-. ":,a. ;:

interest in largescale Al programs during the past decadf- that

non-sequential architectures have become a viable processing

alternative. "-

Non-sequential problem solutions are more concerned with defin-

ing underlying relations than with prescribing their computation.

Just as the procedural languages provide a natural expression of the a_.

sequential approach, non-sequential processing is best described by

the "symbolic" or "definitional" languages. These can be subdivided S

into thre groups which have evolved along divergent lines since thfv

first symbolic language, LISP, was developed by McCarthy in the 1960s.

The largest and best known group ,ncompasses "functional" Ian-

25**a.p
%II \''

%-

OP % .

guages. which view a program's output as a functon (in the mathe-

matical sense) ,)t the inpit. Durirg ,xv,.icjon. successive reducticn! ;.

are used to simplify the program furaction until further applicatiuns

are impossible. Recursion and functional c(lnposit'on are the primary

ccntrol mecnaniz-ms, with each opcration performed when the resit it %

generates is noodod by an invcking instraction.

In contrast, "logical" languages employ resolutioii and unifica-

tion as their primary processing mechanisms. Program execution is ,

approach-d in terms of proof derivation. A svri.!s of propositional p

logic implications formally describe the underlyitls t.-is or assump-

tions and any inferential rflations between them, with the desired

output expressed as one or more queries. To satisfy ti.. goal, appro-

nriate patterns are select d from the ;,.Ale base to produce a solution

space.

The third class includes the no-west addition to the spectrum of
.

* "

programming languages, the "dataflow" languages. As the name sug-

gests, these approach -xe(ution as inherenLly concurrent, with the

firing of Pach instruction dependent solely on th, availability ot its

data inputs. Dataflow operations, like their fanctional and logical _

counterDarts, k-xpre.;sed in te-Ms :of funt:tirnal applications.

Although recursion is eliminated as a programing tool, the mathe-

matiual notion of functior is extended to allow Lhe return of more

than one value.

Applicative processir . is not the only alternative to the,>....

scuential envir)nmont. Strictly speaking, the term applicative is 5

26 %

J, % %

% .11

appropriate only with respect to a functional or roduction paradi$Un; -.

unification and dataflow systems more properly constitute separato

non-sequential entities. The only systems which ar,, currently capable

of meeting real-time performance standards, however, are applicative

(this topic is discussed in more detail in the next chapter). Fur-

thermore, the three systems share almost as many fundamental simi-

larities as do the procedural languages -- as witnessed by the fact

that virtually all post-experimental implementations of logical and

dataflow languages are interpreted representations relying on

applicative evaluators. In keeping with the objective of assessing

the feasibility of optimization using available methodologies,

therefore, the discussions of non-sequential processing emphasize the

applicative model.

The sections which follow examine the functional characteristics

of the implementation system in general before focussing on teatures -

specific to the two processing environments. Particular attention is

given to those features which have implications for program

optimization.

3.1 Structure of the Implementation Solution System-

Between the computer which the applications software user sees

and the physical machine controlling execution are a series ot

abstract or virtual computers. Each level in the hierarchy represents

a finctionally distinct machine with a spocific instruction s(.t,

27 -

S. ,%

,:: z. =:,,: : ,: ',;'Z,",-,- <-. 4< -< -';.- - "'.-<-,T. .C'.-.-.-'C-' - ,',."---'{v. '.=---="• .. _,, ,.,. .. ,,.-

_7 W Y 7% j % % e
- ~ - - -. ... P_ 5- - -

%

rsource configuration, and impleentatio)n srateg y. 1he implications -

for optimization are critical: program improvernnt, at ne tv el d oe{s ..-"

not nocsarily rpult n efficiency at the next. .,.e'

% '% R,

Figurf, 6 ilitstrates the abstract computer h'--.rarc)y for a , l

tynical implmntaton system. At the highst I-vl is the machine .. .

~.. "=.
-

defined hv tho arnplications program. The "program" it ,,xecutps is the ".-we:

•
~. ..

nsut data, and excution is e rentatin st rms o thgy operations •

th appliiations prgrammer doe not normally concit of his program..

as a "translator", in fact it functions as such by I -. :;forming the 0

input data into a "target program" which is executed by the computer "

r pro esentsn at the next level.ext.
: ..

The operations ot the applications program in turn serve as

"input" to the virtual machine defined by the high-level language

translator. Th . machine'nsror s are described y another instruc- . .

tion st, enrally the operations that are expressed in mnemonic
form

as the assembly languagle lante of target computer. The assEmbly-level

instructions provide an interface to yet another
abstract machine, hisp

this tim exicutng the primitiv s provided by the operating system.

At the lowst he f the impl mnation system -- just above the

physical intnrfacs to the xeution system -- is the microcode or -

sub-rimitiv abstract machine which translateh operating
system

.' *.-

tranlatr. hismachne' acion aredesribd b anoherinsruc

28-

tinst eeal h oeain htaeepese nmeoi om_

-d

Operatecritio Systemompte

M icnsroode Compu

High-Leveltio LanuaetCmpte

'~ ssmby anuaeSopute Ipeettion System

29~*1

- . *. W7 -- - - -

%

%% %

functions to Physical machine instruction.1 -I

The abstraot machine hierarchy thus bridges the semantic gap

between the description and execution systens by successive int,rpre-

tations. The rltiplicity of layers greatly c(oplicat:s opt'mization

activities. At (.ach level, operations must be expressed in terms of

the availahl, irs,ruction set, generally without regard to the appro-

priateness with which those instructions will be translated into the

next machine's operations. Intfr-!evel transformations thus tend to

be "black boxes from which little can be assumed about the ultimate

fate of optimiyation att'mpts. •

The hierarchy of abstract machines clearly parallels the cmmnon e

stratification of programming languages into clarzrs of varying _V?

degrees of machine dependence (Figure 7). The similarity may be 0
. -. -..

misleading, however, since the selection of a particular language does %

not necessarily increase or diminish the number of implementation

nappings. The level of abstraction of the Lariag(e does determine to

some Pxtent the degree of optimization feasible. A programmer using

assembly language, for example, can modify his solution to take '.

advantage of specialized instructions, while the user of a very-high S

Ivel language maY unwittingly exore s the program in such a way that

no improvement is possible. In gperral the difficulty of trans-

I Many impic1rentations actually involve more levels than are
shown in Figur- 6. The "operating .rstem computer", for example, is .-...-
generally sub-stratified into a library program level, a utility
level, and .erhaps a supervisory level. Fach of these has a distinct
set of primitives providing a transition to the next lower level.

30
S*4z ,," "41r:

t5 *
-L _ : -- - - "- - 1 " 1 I - iS - %

0' .

A--.

machine
Idependence

Fgr7.ProgrammOinge eyHgee Language s rarhy

31S

L O

forming a program concisely and efficiently increus,-s in direct -

proportion to the degree of n achine independence. &ubs~quent chapters . .

distinguish among levels of language where appr,)priate; i. no mention -&I?

of this is made, it should be assumed that the offLt is negligible.

Another 'actrr which imposes limitations on tho nature and

degree of optimization activities is the manner in which each abstract

machine effects the transition frnm input to target program. Compila-

tion systems statical iy analyze tho input program and generate an

output program which is completely expresscd in terms of target

ins tructions. 1 Thiq output is rpady for "Pxecuh-7 ' by the next

level's machine as though it had originally been coded in that form;

it is immaterial whether the program is executed ir nediately or at -_

some later date. In contrast, interpretation systems defer most 0

transformations until run-time, when the abstract machine interprets

or simulates the input program through the use of library routines,

which provide the low-level algorithms necessary to carry out each
instruction of the higher-level language. Most implementation

hierarchies include a combination of compiling arid interpreting

translators. Th- complicates the optimization process since -,. :

transforriatin- 'which e.re Fr,,iile (,r deirable in one system may not -a..-.

b feasible in the othor. I . .

Th'is fir, the funttioni wg o! each abstrazt computer has been ,

1 The process is also r-ferred to as "translation"; in the
present discussion, hovev,.r, this t,rm is used generically to include
both compilation and interprer.ation. 0

32 W

% R.- '::"--;";'.'i---":v -'--;,-=-''-% '.'v;'.'-:'..'. " ",'-.';.'=" "" "-.--.',-'--'.'.' • ," ,.v '.,...v...'.-.-.- -- '- .-.- - ,, ,, ,

- . ' . ,

%

*.k

characterized in terms of its interaction with adjacent machines,. In

the sections which follow, the implementation zsvste(m is approached in

terms of the framework imposed by the processing f-vironment selected

for program execution. It is important to note that the processing

environment, like other features of the implementation systm, is

neither wholly physical nor wholly logical. It must concrPtize both -

problem definitions and computational procedures, yet it doe so) in S

terms of an abstract rather than an absolute view of the underlying

physical architecture.

5%

3.2 Characteristics of Sequential Processing

In the sequential environment a clear distinction is made.

between control and data elements, with a separate x)rtion of program

storage illocated to each. The control segmTint represents the series %

of instructions to be performed, so elements may only take on certain
Pe-

configurations (i.e., i nstruction codes accepted by the tarot ab .--

stract cnmputer) and their ordering is crucial. With tew exceptions,

the control segmpnt is immutable, that is, its conte-nts are, not

altered during execution. The data segment provides storage elements

which can be manipulated by the instructions. In this case the.-

ordering and configuration of individual elements is incidental

(although possibly subject to formatting constraints imposed by the-

target) and the code is mutable, or may be frelly altered during

execution. The control/data dichotomy is maintained throughout thfe %

5% 33 5...r

*-5.. .. S-..'""".'"" """". -.- - -. ," ,""'"''''''- ... -. , - -""'''-''""""- .- ; ''""''" ,C,"""", - ", ,"' w w ,"". , "w"','

*1

abstract machine hi-rarchy of the ir~l'nrcat ion systn. 'nte transtoi-

mation ef tected by each lpv I-1 act hf~ gh to 1(),A Levei , one-to-many'

mappings of hoth instructions and diata it~r-s. v; we shall see, this

characteristi- dlivision hcimzxxrtant orercuthe:: nature o

optimization activities.

Figure 8 illbistrates the layering o)f abstrac*. -,achir- es typically

f-ound in snquential proce#-ssing erliio'rnent-. Blwthe Fppli.cations

orogran ernputor lip tw-) levels cf -systcn sup;r~t irnplffr;ente-d by means

of software and firmware. Software supfjtrt ntihi es ncl,.ude those%p

foxpr-ss-d in 'orm,; ()f the primitive ope-ralti-ns p;-:, -1 by the pro-

% grarning language-, lihrary reut 'wos establishedx on levels specific to

or independpnt of the programming languagsa, and ti' -iderlying sub-

primitives availahlfe through the)ot-rating sVt':. (Ada language

implemebntat ions are s--arhat dif L-tront frIm this- comtiguration, since

the KAPSE typically providerF; machino dpnde:nt, low-level services

which wholly or partially replace access to the normal operating

svstf'm subprimi',vse' . In this respect, it .v, simiLar to the layering

of non-soquentital onviror~nentFs establisned on iquential architec-

're.,seeo Figur- 9. Tbtq fit-!,,war?- l'.-iel machi nf transforms the

s iftwarte 'ns~r~j(r ions into '-heo mi 'oc-.'e u)yr'm ie used by the

hardware conLYN~l lunit.

The !ztriict~irir rc.~f he1j pr. raxrinF langii' implementation may

'illow thr upi i ,tins -Pr-ogramr to ~e ~I acess the library rou-

tinfes, hujt thiszi no-t Liwvys t],e 7~~e hese potential interfaces

'irp i nd iva r-o rn S'i~ by ve-rtical channelIs bypassing other inter-S

aqJ34 a'

S

,p. 'pp %

-N

VI

DESCRIPTION SYSTEM

Applications Level Applications Program U

Programming Language Primitives
iiLang uag e-Specif ic

Sot tare uppot Leel jLibrary Routines *
Softwar SupotLee

.. ~;Language- Independent
j -'-' Library Routines

Operating System Subprimitives

Firmware Support Level Sequential Microcode Primitives

Figure~~~~~* 8.. -yste Supr aeig nSqeta

Procssin Environments

35-ft~t$~t

- - - - - - - - - - - -4-4

-4

%

face levels. The imrolications of apport. layerirv sho)uld ho obvious, i

since each level conceptunily repr,.-n:,ts an abstract machint.: the

niimhpr of transformations r-:-quirpd durpn exe'ution is in direct

proportion to the depth ot support layers.

Supposp that a given machine M, in the systrn rceives as input • -

a v,,rsIon PM of _he program. PM includes two p,)rt1on - , a control-

se- ent constnrtod frn-n the instrcticn set for V and a data segment

consisting of a sries of .stor&gP einments, these are represented as -.,

I= i, r, ... , ijj and DM -- d, d 2 , .. , k , respctively. M --

transforms PM to an ' tput version PM', targetted t,, ,i ", xt machine. 0

' -- i.e.., = i 1, 2 .'m. and ' = '1 , a' 2 ... , d'n. .

Because M' is closer to the physical level than is M, is typically

the case that II.M'I > IIMI and JDMI > IDM;. Below M' are additional

machines M'' , etc., each processing a more primitive level of instruc-

t ions. .%

Since it represents the cumulative efficiency of all abstract S

machines in th- s stem, program effiifencvy is in general adversely ./.-

affctPd by the, number of support lciytrs. When a short-circuit

channel exists from M to M, hnwove-, it becomes teasible for the 0

output prrogram Io include some i -istructiois which are already " -
,.

tarizttts'd t tie lPwer macihirp, thus obviating one or more levels of

transiormat i on. A wedL .IEsignod translator can 'itigate the effects 0

,)f layering by €,xpress)ng tre output program in such a way that it can

continue to be tran!;,.errnod efficie'ncly at lower levels and/or take

advantagv of short-cirruit channels to bypass processing. •

36....36 :""" %'"

4 d %*

,. # , *- . "" . "" '',."" '. ."-. .''-.** .. ,. .# .. . , ,, , . # ,. ,.. ,,

-I,

3.3 Optimization in the Sequential Environment

To optimize program storage space, it is c'.,rly necessary to

minimize

size (PMn) size (Ihn) + size (DMn),

where Mn is the final (lowest) abstract machine in the implementation 4..

system. (Note that a minimal total transformation doos not nec-

essarily mean that each partial transformation is minimal, although %

this is typically the case.) Time optimization is not as easy to

characterize. The generalized view of execution (employed in the.

preceding chapter) as a linear series ot program actions must now be

reformulated in terms of the abstract machine instructions used to -. '.

express the program, including nonlinear control directives. Total %

execution speed will depend on the speed of each target instruction

and the number of times -- possibly none -- it is executed, rather -. '-

than the number of instructions (i.e., lNrnJ)J ."...

The remainder of this section will refer to program execution in .

terms of the operational semantics of a single abstract machine, M, .'-.,

selected arbitrarily from the implementation system. In describing e

the effects of executing the program PM, it should be obvious that we -.

are modeling the simultaneous operation ot all abstract computers in

the configuration. This is consistent with the observation that

available optimization techniques are based on general aspects ot th., --

control/data dichotomy rather than features specific to any singlre

37
pW A

- 'I. ..

6 -
%' ' '

%

Ilk .

-~% '

processing level. -

Program oxectition in the sNquontial processing env~rormient i

commnonly viewed as a spries of transitirns fr-vi one pr,)ram state to

another. Each state is de~iciil~ed in turts () a rx nter to the next

c)Peration in th-~ controi s4nent aK! the c;Irtent c.(iffigurac ion of the

data qegme-nt. In' terms ot th- notation alrepdy tslabiishtd, a program

state is there tori' a pa4r (iD), whore i is thc instruction to be

executed next RnJ D the ('ortcnts (-f the data sv-gmt-nt. Execution is

modeled as a cpmInuttjon stque~e or so rie-s o" the m.n

(i0 ,Doj) (i,.D). ..

tndicatinkg the progression hfr'-,inning at the initial program state.

For each state in the sequence, th- su;iccess-or stat(I ~determined on

the following bases:S

il xtinstructi')n(in) it in does not cause a branch

[nxi target instiiz~nn o-'il I-c

Dn = Tn(Dn),

where Tn is thre t rant.tormat i rn on dat t elements effocted by the

instructi~on in I t the program e-nr.-, the series isi terminated by a

final state; olherwisf' it ev;c1,.s indet~nitcly. A snapshot is a stat- ,~~,.

nair (i.,,Dj) iit thf- !ntqt t~ s-uenrc,, tpr'.S4,1ti ng the cont igu-

r-ition after j-1 ;tait#!monts hay"- exe-uced. (Note that .4 rofers to a

po)sit ton .1 r"- nrnoiogv of exct~'arod not to a relative location ..

in th- program do t ,rnhtLon. !t i--, t.*rofor,' possible that the control

';rgmfent (1M) mii& t, incluix inc';:ructionzs .which are not attainable from wn

38
% %.

the initial state. Any instruction occurring in a program state -

snapshot however, is by definition reachable through at least on.'.,.",

.%, .%

computation sequence.) ,.

= It is important to observe that the computation of the next in-

~truction of the control segmnent is distinct from any transformation

made to the data segment. Because to a large extent control and data J

function autonomxisly (with the obvious exception that transfe rs ot

control may be contingent upon data values), theyv may be analyzed '

independently; hence the terms control flow analysis and data f low'

analysis. Control flow analysis establishes the tfasible progressions 0

of the i components of program states by considering what instctions -

may be executed in what sequences beginning at the initial stat#'. .-.

Data flow analysis, on the other hand, concentrates on the range ,(A @0.

the D components by determining what values ma be tak n on y

individual data itemns. "..../

Appendix A describs optimization activities in th sequential

environment and suimarizs the results of studies attempting in) %-

quantify what cffrct optimizing transformations hav, on program

performance. In spite of the ionclusive nature)tn this data, it is

possible to generally identify the t eaturs ot the snquantialtra

processing environment having greatest intluence mavorabl or,

adverse -- on optimization potential.

The importance of the support systm configuration has already

bemn described Both th numer of layers and the quality of the

translations influence the overall onfPctivr-nats.- on improvent

th Dcopoens y etrmnig ha v~us aybetaenonb
.1k

4

- = - - - : , -- - - '--"- '*...... -"- -.. .. - *,-' -~ v- ' ,;. -',.' .J ' -' - b '' '- . -. w.
.~A J-1

b-A

efforts. In addition, optimizatior activitie~s are favorably -6

influenced by s uch progranmning practices as the intellige+nt selt,(-rion .%V

'%.

ot' data formats; to) minimize th~e n,,-ed for coercion or conversion,.-. the.-,,

organization of expressions to facilitate the Rpplication of algebraic

transformations, and a caretl placement of non-optimizable" :

siJ~xpressions (su~ch as tho -P involving invocations of user-defined ""

function.s) with respect to loops or other control structures.•

Optimization is advr rly affec~td by the use of language features % P

which intf,rterv, with control and data Flow analysis or valuee :; __...

propagation. Tho.s- include, tor example, cilias(.d o-- .1ynamically 0_, I

A %

allocated variabies, global or othr data sorage which is modified by %
side ffecs, unconditional transfers spanning severe, control struc-

trs(g., a OOw. ose target is outside teep bN ndaries of the - .1

enclosing logical interval) , the uso, of control variaoles (i.e., entry .,'.

and label variables) and/or directly or itrdirectly recursive .

ilOtymization tec Aques in the sequential ervironment i as we

havo- seen, rely ,ixtenisively on a f,-v fundamental assiunptions: (1) a .b

oipartite, control/data orgaization, consisting of an immutable

c ontrol .sgrni-, anr- a r--A'&W• dat.. ;, r2) tiie use of program . ,..

rmanls as rofrnces ton specific loatons in lti segments; (3) a

suh-,(juent dr-p-ndrne, on -.tttic (prt-execut ion) analysis to associate

or hind soymt-i to hn atin- (4) an ultlmen.te restriction of program.

4.4. .';.v
:

contrnl to nro v simpl e prat itives, ngnvoctquoning and conditional

branchin; arx (5) a correspondin rpliance on iteration and selection S

40.

S %4 ,.

,ll.atedvaribl...gl..l.r.ot.r.dt..sor.. . whch.i.modfie by''.%.

I • . % .%

.J.. I

,'.'L"

as the basic control flow mechanisms. Any deviation fromn thfese can -i

seriously impede improvmnent activities at all Iv,,ls. Consequently,

the two factors most important in establishing p-t,ntial for opti-

mization are, without doubt, the way in which the problem solution is

expressed by the programmer I and the configliration of support layers

in the implementation system.

3.4 Characteristics of Applicative Processing

Unlike the sequential environment, applicativ proc(-s.sing does

not employ a bipartite organization nor does it approach problm

solution in terms of a series of operations manipulating data ',-..

ments. Instead, a program is a function aprlied to the input; the

resulting value is the output. Since no r(al distinction is made,

between program data and problem data, a single c,-Tnmon representation .

is used to represent all program elements internally. Fun(,- t ion

definitions and data itms are both stored as linked lists c(mposod 0

ultimately of atoms. Ev,,n language primitives are atoms like any

others, distinguished only by the fact that they are defined by the.

system when execution begins.

Furthermore, the value of a symbolic language function, like ,

its mathematical counterpart, is determined solely by the values ot .- :-

Recall that this is independent of any consideration of how

well or poorly the selected algorithm is suited to the probl.m,
although of course even the best opt imizer cannot compensate for an.%- %
inefficient algorithm.

41 -

po_7- ;

P ll~ -II. 0

-- { i lI lll, ll llld l Il~d i d d i li lll I~ l ~ ml i '- : : II t : • L L : _'p

its arguments. This property, called rfereitial tansparency, has a -i

Profound impact on proces-;sing orga.,nization. At a givri point during

execution, the crnputation to be. perfo.r,-d depends orvL on curre.i-

context, not on the history of actions which ied kp ti) it. The

notions ot prnr'r.on state and computation sequence ar'- therefor(,

entirfly ab.,nt frnm the applicative er.virY,,rrnt.

Since prog-am sYmbols no longer represent l.cation.; in the data 0

store, the fundamental units ot prxxedural language programs (expres-

sions and 'assivynf,,nts) lose thei r pc'wer in thc app ic t ive setting.

F(or exainil , th, ntriction
*.. *1

in the sequential environnrmnt indicates that the contir.: of location

B should he retrieved and copiced to location N. overwriting any -.

pre-vious valtue. In the applicative environment, an instruction of

this sort i.s vi,,wed as ostablishing a defirtkon or association .

betwen thf, valus of A and B, rather than performing an operation.

Since A and B hay- no "locations" per se, values are not directly

stored or copied, a trait reflected in language syntax, which

restricts th, appearance of a variable to the letthand side of only 0

one tjliatit)n per)rogra.n. (Not naL because t is the notion of

definitio)n rathr than connetation which is implicit, the statement

A=.+l is m,,a"ingl(.ss in the applicativ- ,rvirorvnrt.) -

Instoad, th,) r%,w-r :)f the appl icativo environment derives from

the homogneo s tr, atmen: Rcczrded Lo all program elements. Programs

can N-. croat,,l dvnamical lv by other programs and then executed. A 9

42
,% -% *% ,

r 0
- ~e #. ~ * -. , . % %,,'

data list may be transformed into a program list and vice versa, with

few if any restrictions. Since program Symbols art- viewed as values,

they may freely utilizP non-consecutive bounds or nrrr jes which are

established and altered dynamically.

In keeping with the notion of functional organization, the

primary control mchaniqiis are purely applicativ,: tunctional cOmpW-

sition and recursion. Even the conditional construct is gonerally a

simple variant of the projection function, wherhv the, value rpturn(di

is the first one ccnputable by the terms of the construct. Op,rat ions,

on data items are considered to have locality ot ettecxt, that is .he.y

produce new items rather than altering existing ones. As w, shall

see, this has important implications for parallelisn.

An immediate consequence of the functional approach to nrx)bl#,n

solution is that almost no von Neumann hardware-rolatod features can •,

be used directly by the applicative environment. If the und,rlving

architecture is squntial, program execution must be sirmilated by on$-

or more extra abstract cnmoutors that indirectly interpret applicat iv.-

actions, using sequential .-oftware routines which can ho translatod

directly into machine primitives. Figure 9 illustrates the contigu-

ration of system support layers typical to most svmbolic languaiz,.

implementatinns. Figure 10 reprf-sents the configiration when th."

underlying architocture is non-squential. In this case, much ot th,
-. , . N.

software simulation can he replaced bv a firmware interpret,-r that

translates softwarp primitives directly.

43." , %

,

0

"WXIN,.. <-

DESCPIP~CN-SYST-

Applcatins Lvel ppliat~os Pigra

Languge Evironent'

-::,g u p rtP, iJ,

ific 'M-t, -

EKE~tr" SSYSTE

Figur 9. 1;'ystin 'JpporzL~aylto~n A Aplcai

Envronent Hotedon equnial Pnromessors

p.44

Aplcain Lee Appicaios Prga

.- *...:..

W .% d*%.

% 'Js

XECRPION SYSTEM.-'''

"z

.% *% '..

ApFaigre 10LeveeSpor ayrni Application rgam"ve;'... -

EnirwaemSppots Hostdel Non-Sequentialoce Proctiessor

45

EXECUTON SYTEM "" ""

.., <.-*

**" .P .'

* Applcatios Levl Appicatins Prgram,
>Language Evironment

,~ . -. , ',*%"

"J './' '% . -, ' . % - -.. -. , ,• .• ." -?- - -, + -.- . ,• .- , -, .- , . , . . . -.-.- .

.,1 " .. '" 'r' ' . " '"'" "" , ' "- ,'-. ." " ," ., , ." " ," " - "", ." "

-7A

Below tho arnplications prx~ram machine is arn integr'att-d langliago

onvi rornmen , which sphIes dg-, rig ai 4.1 a rn Portiaps other dev0'p-

mo-nt support tools. Its ouitput is in the tonoi of Ihe nrimitives iisedr

by gs-noral langiiage, ,-i)),xrt tacilitios, primarilv e . torpreter and

the garbage colloctor. - t th! next laver , fach prc- inj primitive

* is reprosented by a software routinc which simiilattes rho haisic opera-

tions sich as funrtional in-vocation-,, data rtoforrcinv.- ard storage

A ii location and deallex-ation. It is at thisq pe)nt that theo distinction

howtwoon sMlbon-tial and non-srqupntial hosts 1-ecanes apvrair'nt. In most 1%

ronfigiirations, !he- eentral control mrochanismrs mu-,! t, smulated by

moans of R softwaro subhrortint- which effectivelIy cor,'.'rts executtion

1 from anpiicat ive to srquential form; from this poir.t the abstract

machines will he ide-ntical to thozco of the scriiero ial environment

depictod in Fil tire A. It, instead, the targot execution system

#-mplovs a symbholic proce.ssor, Lhe, Primitives are translated via

micrf-co(-de at the, finrwarp upr o:1

-~It should ho clefar that a nrimary rause of' inofticiency in most

e~xisting appliciativf- onvi rornmrnts isi the excessive amount of simuP-

Iati.en rrqihir-e1. Th- _confiri~rati(-n of FiFuir ,) suffers not only

-bocauise rof the 1 fordiflatte number () trrns forrmat tons which rmist be

)n ani je-i hu t a I ,,) from the djf fic ,It ips i nherort i n i nterproting

n on -, rq fn i ! i ri i ru, c ir i P r , 'it ia I fo1 1rm. The situation is

tiirth#or exacorlhh red hv teeifljso enndngoven primitive*h *

a r t hmfiwt i -,c ora t i n . rai! thlh, se irh l at t the , et(-~n t ot pertormi ng *

rrn-t ir(tvreo- ('he-*ks ;--,r (c.fivrrsions.

4b

U.%

7,r

"~-...'

S, _,.,*~

J%

%

3.5 Optimization in the Applicative Envirornent ,

' Since the concept of program state is missing in the applicative e

environment, optimizations based on normal control flow and data flow
0_

analysis are inappropriate. Unfortunately, tew optimizing trans-

formations have been developed specifically for the applicative

environment. This can be blamed to a great extent on lack of donand,

due partly to the lack of popularity of symbolic programming prior to

the mid 1970s and partly to the habitually casual approach to effi-

ciency taken by the artifical intelligence community as a wholo. It S.

is to be hoped that the recent interest in real-time Al applications

will result in new developments in this area. .',-*U

The simplest way to achieve significant pertorance improvf nnts

is to take advantage of the compilation facilities offered by many

applicativP implementations. A compiled function is transformed into .

instructions corresponding to those produced by the language primitive

abstract computer. When the function is invoked, only the firywar.

interpreter (or its multilayor software equivalent in the cas, (it a

sequential host) is needed to complete the translation process. 1 Al- "

though this cannot he considered an optimization technique in the

strictest sense, it is the only means of improvnemnt available in many

1 It is not often possible to entirely eliminate high-levl.

interpretation, however, since most configurations require that even
compiled functions he activated through the language environment laver
rather than by direct user inwcation. -

47 '-

,. ~ ~. .j_

. 'I
d . .%

%~.~ 4 J

L (.

Nmake ssev'ral assumrpi.-)ns !,houxt the naturo:)F i nt-ot progrirns; delia8t tof

rom thps- nrl-rns, irinelers or pree I ies ,ipnrovf-rmept. O ne basis ot

local ity of fff4ect. :ata d(-oe-ndfenc1',s 3rie con-,;idor.cJ to Ie lo al i zed ,

i -cubpreg ri i r t ts have, n,, side ot foct:z. z-irv no- , 2ei baisic. control

mec-h a i sms a re f unct i onalI conipos~ i i and retuiirs i r , programs are

a-sum-d1 to he mad.- up of a lax-ge numbr-r of:;miI cften recursive

i l t,;. Thi,,mn!-n that a suh-stant iiIpri of (,x(_jiin time is

d vot(,d ton a (i v at i n (t he lin!-,ageP. be t w een u n it Lndlly, late

binding is qiiinte~ssential in the appli, ati ;e envir-nrnent. Static

a nalIyvsis cannot suff ice- to as.-,(iatf, symbols 4; th ati- ,Adtes since, the

prop-rties of Nxth functions and data it~ms may be4 cre~ated, redefined,

or destroye-d all arbitrary points during execution,,-. Instead, a heap

a:,ea must be mai nta iinod in which sto-age may bi- allocated and

a~l located in a "f1 latively ur--trunrtured '-,shion.

Program e-,.r-cutior, n the appi LCat i'qe tnvtroim'int can perhaps

h.-zt be --ee-fn 1f- the a' terr'atinn ot two) activi tifes, substitution and

s imp1 . if ica t j (.n 73uhb'Atior 'un rflriing) r.-fer,, to the action of

r, I7 a.- i ing a p '.r, ,vrnh~l I tAN its S~ 7. i 'lhis is followed by

~ i if icat i, n - _'.i ~t ion), wh i h r-nl; (- es t he def ini tion by the

r(ohta: n-(I th roi 7h -ialu.;t inrg r,11e -)A1-v of t he(def ini tion. In the

*a"o tns w lt i sts , 1 1o 1 ,-a,, ion i s trivial, si nce- the

val iii' is e'ht,,iin -d through :i s'-arch t., the storage area. For tunc-

*t-ns. silmplifir!i, v il require the application of additional

48'~ ,

9%

• '. .q

" • ~~...,, ..,

substitutions and simplifications, perhaps rocursivw.ly.

Appendix B describes the optimization tochniques which hav hren

developed for applicative environments. An atts, -t is also made to

evaluate the results of studies on the effects of applying such

transformations. It is quite difficult to characterize the features

of the applicative processing environment having greattest influence on

optimization potential, other than the pres(ence/absence of the

applicative-to-seuential transformation. The paucity of behavioral . .

data, coupled with the disturbing nature of available results,

relegate such efforts to pure speculation. S

If we assume that current techniques address the real problns

and this is by no means a safe assumption -- then improvement

should be facilitated by the concentration oft numerical computations S

in fewer subprogram units and a reliance on purely applicativ.

constructs. The use of "special" features which makp a symbolic

language resemble a procedural one should he avoided, particularly S

iterative structures, GOTO-like transfers, and pathological binding

strategies. The use of type declarations, however, should be.

beneficial since it would facilitate several types ot improvesonts. S

Optimization techniques in the applicative environment rely on

the following assnumptions: (1) a homogeneous inte.rnal re-pres ntation..

(2) the treatment of program elements as definitional values rather

than storage locations; (3) a subsequent dppendence on dynamic > "

binding; (4) the use of functional composition and recursion as the

primary control mchanisms; and (5) a corresponding reliance on the -

49

p..

' % _%" %

f %.
% 0 %

:::..,,

properti,>s nf reerential transparency and locality of effect. The

Plimination of system support levels by moving implementationz, to,

non-sequontial processors is clearly the hest way of achieving

significant pprtomance improvement given current iPethodology. The

application of automatic optimizations must be viewed with some " "
..

skrpticism until their effectiveness is demonstrated by empirical

stuidy.

50 .
444 44%

-4 ' - ,

4" " 4'

44% *4444-4

4'..,'

50
'" '4

S .o"o

'_. -.,- ,,.. ,,., ,. .. -.-.- ,. .- .. - . -. .. -. ... -. , -, ,. .._<. .,' ,,S

4-44
"

. %

4 A Strategy for Maximizitng Optimization Potential '

Previous chapters discussed the nature of' nrogram performance

and the ways in which it can he enhanced in typical impl~inentation ,)

settings. As we have seen, the types of improvemeonts that may be ...

applied are determined byv the characteristicsn of the processing
environment. Particular optimizers may utilize larger or smallr %...,

subsets of the available techniques with greator or lessor oftfe.- ._

tivpness, but the limits are ,ostablished globally by the (,nvironm,.nt

itself. Since our concern is with the efficiency o)f Al algorithms- in :€

the implementation solution sy ,tem, it follows that wo should tocti- , %".

our attention on the selection of the processing environment.

The ideal environment would be one which guarantees optimal -'

program per formance in all cas;es. Since eff'ici£ency and opt imizat ion",I,?] "'

are at best relative terms, this is patently impossible. It is 4

unlikely that any single configuration can predictably maximiz(- the.

J ~performance of even a small .9ibset of the Al prolems pos(d by B&I/C 3

applications. How, then, are we to realistically select an envi-

ronment for the optimization of an arbitrary Al algorithm? Th,,..-'-.

~. .:...:.

s ections which follow establish criteria for evaluating pructsing .

environments in terms of their responsiveness to program needcs. :1 0

d iv ide-and-conq ter form of implemeontation is then prc-snted. This . :''

stratpgv partitions a program into sogm,,nts t(-r processingf in a tit- -- '-'.

torogeneou.s environment, thereby maximizi ng program "opt imizahilIi ty".

51'

%" r.-.

-. ,-'-U.- d

. S. -.

t%.

4.1 Evaluating Processing Environmnrts-

Any proc,,ss which relies on successive transformations falls

", 5
prey to the dangers of inefficiency and inaccuracy. The implemen-

tation system, responsible for bridging the quite c-,nsiderable gap

% betwetn conceptual and physical solution, is undoubtedly a major
.".

source of pertormancP degradation in all ccwnputing systems. The

development of efficient Al programs must ultimately depend on the

capability of the processing environment to apply automatic im-

prwr- nvments which at least partially compensate for this introduced

inefficiency.

One criterion for choosing a processing environment is the

number of aistract machines in the system. The relaulonsiip of system

support layering to performance has already be-n addressed. Clearly,

the best layering configuration is that which will require the fewest

number of translations in executing the Dygram. Relevant considera-

tions include th,, number of layers present, the availability of short-

circuits to byrpa;s intermediate levels, and the fact that individual

,* layers do not ncessarily play equal roles in determining the overall

effectiveness ot tho system. An a.lternative is to select optimizers O.

which exploit the nature ot a particUlar layerirg configuration.

* .Since optimizing trensformations are never applied uniformly across

all portion,, of a program, this invrlves assessing the relative . '

"." likelihood of preconditions tor inmrov(inent and the ability of trans-

lating mrhanismn; to take, advantae oF short-circuit channels, as well -

as tho eff, ctivness of each type of transtormation. It is obviously

52

, '. 1.4"

desirable that improvement efforts be applied at a] I loews of the --- '

implementation to achieve optimum performance. The two approach(s can-., ",.

% %

be combined in an approximation of the minimax Keen-Tlaying heuristic..

1%%

The goal is to choose the ;ystem configuration which combines a ---

minimum number of abstract machines and a maximum degree or automatic --

* .. ' .

improvbent. Such a election sets an upper bound on the degree of

efficiency attainable by an arbitrary program but it cannot guarantee

" lower bound. ..

Another aspect of the processing environment is that it provides . .',

b computational paradigm within which the probl solution must be

. - -a%

structured. Here we find that the sequential and applicative envioa n-u

mets, like the languages which naturally express each paradigm,.-.

differ radically. The procedural/sequential approach to proble m '.'
solution concentrat on data manipulation and alteration through a %f

strictly ordered sequence of operations. The functional/applicativ-,--€,I

'.'"

solution, on thf, othf-r hand, c(nputes by value rather than by effect,"'2
so the program description arbirr p relationhips instead ot the

atrms of computational power, the two paradigms ar ap--

A.

proximatply equal. Sequntial processing correspo~nds to the Turing :.,

model ot cpnatation with its clar delination o control and data. "'

Prouram instructions are encoded in an immutable stpr and slctod

for exution by means of simle sequencing or onditional transfers -

operations can examine or alter the cntents ot the mutable dataadle

store. Asociat d with each action is a program state, which encap-

~~~~53 .".: '

-'a'.
' °%.-.,



sulates the history of the. computation to that point and determines -

the next action to be taken. F,.ncttcr.al processing Ipproachoei

,omputing from the standpoint of rPcursiri theory. In this case, .

control and data Plvpnts are troatid homg,'i-msly a, values. _

F.xeution is a process of functional P'ialuat.in, setinced by

functional -rnrpsition and recursion; th, n t -omFutatio. is thus

(eterminpd hv (ontext rather than history. The clas s (f problems S

comrpltah e by moanq of recursion tUeory is rot, trictly speaking, as

g-neral as that d,,cribed by the Turing orx,,l. Since the differences

are pathological, how,,ver, we can view the two as oqiaient for the S

implementation of Al algorithms.

The types of optimization appropriate to each .nvironent have

been discussed in considerable detail. Unfortunatfly, it is inpos- 0

sihle to ccnpar, thfe two impartially in terms of performance since C

published findings are vague and self-contradictory. Figure 11

illustrates a single benchmark observed by [Gabriel 651 on a variety 5

of systems. Tho results are totally inconcluivw-. Few details are

explained in the repor' (e.g., details o comparative machine %

configirations and somo of the options arf not described) and the *

Pxperimental co(1ndirir,; d.- not urviv? cloie scrutirny. Furthermore,

the Tak bench;nar& itself is of qiestionahle utility since it involves

som, 64,000 r((-ursiv,, calls and 48,000 decrements but nothing more. 1  •

1 That Gabriel wis not purpcrLiig to compare LISP to other lan-

giiagos is Pymoat.rial* the findi.ngs for individual LISP systems are
subject to the sam- tack of coherence.

54

% J, %..e" S" "_
°, S.S -



% i'..?.

generic~. arthetc ..

~- r

, ,=, "1

'-.. ;..'.

PSL*~. geei aritmeti 7.1

VAX11/50 Franz Lisp inteer arithmetic 39.6 :.-.

Franz Lisp integer arithmetic, fast 1.9 ;, ; ~
function callAA

PSL integer arithmetic 1.4

VAX 11 780 Franz Lisp integer arithmetic 2.1I,'%' e
(Diablo) C13

MC68000 Pasca 3.8 ;,
PSL SYSLISP 2.93

Machine Language 0.7...' . "

Stanford MacL-isp 0.832 -.
A Laboratory MacLisp declarations used 0.564"'-.

Machine Language "wholine" 0.255
Machine Language "ebox" 0.184 '- . '

•Portable Standard Lisp ;....

Figure 11. Gabriel's Tak Benchmark !: ":!;

a..:.:.:..:.

Comparing Lisp with Procedural Languages

V 1 F Lg c t1

genncaitheti 116 • "°'%

,S eercaitmtc,.

C 2.



0

%

.% ." _

Statisti'ally rlovart data c(nparing the twc, environments is simply

not available at 3nv lre"..
%

The expr,,ss ve power at t'rded by the two envit:or'm-nts is al --

difficult to compare, primarily bocause the campra t ?i..,ual paradigms

are essentiallv i'nompar-h1. In gonE.ral , the svmbc) c languages

allow a simnl,,r. nor( olegant descrint-on of prohl,,;.s. Output cin be

clearly vxprssd a- a tunctioi ,)f input and a singl- a 1 4 rithm can be S

uniformly appl id to individial data object+ or en Irfe classes of

thrn. Pro-edural languages, )n the other hand, a'- ,,ore natural to

most programmrs. Their form is familiar and r- ', .t. the human

tende.ncy to viw pr-,r.lr- solving as a sequence of tctions. Th-

selection of an environment on the basis of this 'iterion must

ultimately depend on the problem to be solved. Some problems are -

inht-rentlv sequential and others inherently recursive; it is as S.-'.-"-

" difficult to express the former in tcrr.fs of an applicative soiution as %

it is to do-sribo the latter scquentially.
Roprsntational power describes the quitability of the en- '

.. :, -. . *'

, vironmont for implementing Al programs. Thp general objective of

artificial intelligence is to encryxe knowledie about some domain and

:hen use thi! knowlodgc' to solv prYb} .rns in the domain. The

environment s-,le7cted must provide s;,ttable means for encoding

nformation, r,-triov,.ig data tha'_ is r,'lovart to the problem, and

dtrn1invni : sa'.iwfact-)rv s,)Intion. F7irthermore, the system must

conform to sofftware ,ng: n-ring st!:.-dards for veri t ication, main-

rsnanc., and -;o f,)rth. T.,, procedural languages art- criticized for

5'.S.-

56 - !

- ".' - 4- ,

%'."'-',J ,''-,% 'Z'; ",.','€.%.'+.+€ €.''.'., .,' j.''," %'+" +'- -'." "" % ''#.,'.> '. .-..' -'.'. '.- "--'. -,0"+'%",,..+, +',"'+*."5;-,-
.,,,¢ .1" +'l" " P' l' 'l' lil-21i~l +l'a ",i -, ",t ~ll- ll~itl11 l~l .'- l'.+ .. ..... .+ % %. ,+ , . . - . ,, , . , .. . i ,, - . ,+ : - = - ,,



~. ... ..,

% % %

their emphasis on calculations rather than tiindamonntal relationships
S

and the inherent difficulty of proving program corr"-tns-,. The major

complaints against symbolic languages are the convyTutions n,.essarv

to express simple sequencing, the lack of applicability of standard

testing techniques, and the intrinsic inefficiency of heap storage

managment. Overall, the Emphasis given to problem relations makos

the applicative environme.nt somewhat more appropriate tor representing

typical AI problems. The sequential environment, on the other hand, P

is better suited to the application of softwar,- enginporing

methodology.

In summary, neither the sequential nor the applicative ,nvi-

ronment posesses an undisputed superiority for the, efficient im-

plementation of A! algorithms. Each approach has inherent strengths
%

and weaknesses which can have significant impact on the pertonnance ot

largescale software systmns.

e..P .. FS

4.2 The Environment Spanning Strategy .,.

The Al algorithms noded for the BM/C 3 setting can he cat-

egorized in general terms as search, reasoning, or constraint

satisfaction problems. A search algorithm c(onceptuialy views the-

entire solution space and attempts to find a suitablf- path through it

((e.g., track discrimination problems). A reasoning algorithm 0
• %"" .. * ,

accumulates data by deducing it from previous truths and add- it to

the knowledge base for future deductions (e-.g., attack ass,,s.nnt

57 "''"" -

."% .. .*

. .. . . . . . - . . . * S. . S ~S. *~. *°- o, - -•N



0

.d% .'"

oxpfrt systems). A constraint satisfaction algoritn si;c-ssiv(1y"

c liminates portions of a rul o bas(, that nr( in(.onsist,nt with che P ,

constraints imposed by th - goal to uitimatf-ly d,,rive -t st (A ()bjC-.ct'. ;

which satisfy the conditions (e,.g., re.ourc- a llor at io . problems).

Large Al .vst tm.- ofton cormhine more than one type of algorithm to

solve complex pi'oh.fns, applying a dividF-.ai1c1-conqu#,r tochnique to

reduce the magnitunlo of the problem to) soDablo p,)ex)rt ions.

The lack ()' conc(lusive evidence concerning tht. superiority of

)nf- processing fnvironmpnt (ovpr the other in torms of the general

noeeds of Al algorithms suggests that a dividt-and-c nIuer strategy

might he appropriato horo too. To investigate this approach, we will

outline a reprosentative BM/C 3 problem and a possill', solution. Oir

goal in proposing an implentation strategy is to maximize what we

will reter to a-, th,, program's optimizability. Intuitively, opti-

nizahility m,,asllrts the extent to which a program can be improved by

availahle optimiz,,rs. This is oquivalpnt to assessing how well the

problin -olutio)n typitits the preconditions for applying compatible
*p% .%/.

optimizing tr-tnst,)i"Tations.

Thfe case -tudy i!s an extension of work originally performed by

Optimization rf' huniogy, In,-. arl lat.,-r supplemented by Auburn

University. The, initial study 'OT[ 861 deali, with the feasibility of

appling symbolic proc,,sing techniques to algorithms operating on

optical sensr) data in tii S)i rnvir.,Inment. The Forward Acquisition .'-

Sensor (FAS) algorithms ,t,¢olorod in Pascal by Nichols Research

Crpo)ration wir, isfd 's th, subject. The set was designed to perform

58

%~

C.-Y %-%" .

,"- ,"' "" " ""' "" "- "'.-.' -'' ".'' '". -i - ' "-","- " '-• "'-," -'" " ,-;,' , , .', w ' ,'.- P " S



-3 TV.. W.

0

sensor measurement processing and prcision track and discrimination -- -

functions; it includes color correlation, scan-to-scan corre-lation, %-%

single target processing, discrimination, irradianc,, calibration, and -

stellar attitude update routines. The OTI study concentrated on the,

area of scan-to-scan correlation, where it was ftlt that the great. st

improvements could be realizod by reformulating the Nichols algorithms..

for applicative processing. Benchmark rvsults were, comparod tor

versions in Pascal and LISP on a VAX 11/780. Pascal out-pf.rtormed -

LISP in data storage tasks (in spite of the fact that there was sif.. .

pro-LISP bias in the data structures chosen for the programs), whil, "

LISP was faster at windowing transformations. The (TfI study consid-

ered these to be mixed results, an understandable reaction in view o!

their stated desire to demonstrate the suporiority oft -.ymbol , o% "%

processing in situations r, luiring the dynamic correlation and undat-

ing of large amounts of data.

From our viewpoint, however, this case typifies a pr)blom c(vTrr,n

to most Al programs in real-time settings. Somo ot the s, hta'-k" -

involved, such as I/O, sorting, numerical calculation, and st, rag,.

operations represent exactly those operat ions which are i nt ri nsi ca I

suited to the sequential paradigm. Others, such as pattern matching -

and discrimination, intuitively fall into the realm of applicative ..-.

processing. Each system performs well when most pryce-ssing is ot an

appropriate type, and each can he overwhelmed when s'ubjected to lar,.,.

amounts of unsuitable activity. Most programming languags appfar t."

provide for hoth sequential and applicative activities by incorj -

59

.. ".

" '.2% "%',% %
"  

V' f  ' 
% V. -

•","% %''. . .- . . -".". a . . *•" ." .- .- .* . . . . . """.
., = ,7 - ,' ~~.. ... .. .. .. ..... €.-%' ,. .. ,.',...."....... '-"..-.-'-.....



rati ng syntactic- fpat'ires mi-r,)rir~g !.hro- (Jf thk', r Counterparts-.

3i fln theo t wt) n r, v vm s a re -so r Rd i c a ii I d LI ertrIi t how evePr ,.

r-scrnblaneps are ,trirtly suiperficial. ,r.

To de(mon str a t f t he i mpo rta nt rolIe plIa ye okic: compu t at I onalI

suitahil itv in s-Tcinv ain irnpsr hoand on n'-r~orranee(, rost-archers at

X\'rhu rn t n ve-rs I 1v 'x t, n li tlie (Xli roritinos. Fi r-t. I, wl!is concluded

that the, existing pt-gramns did not in fac~t partictilarly e1xercise3- thoso 0

task a rt -s t or wh ic I 1,1S P w~qs mos t appropr ia I-( (e. g..m 'i tom t reat-

noflt it prr-vran and nrobm data, rpc'irsioii, find properties requiring

dIvnamir hinriing). The manipulation ()f dynamic p; Ip,,rty lists was

videdw to *he -.irwinal pr'gra to mc:tthis bias,. Tri keeping with

'nit flf- of go-nforal di ',erimi nat ion activities, '.!1(- property lists

w.'re de#-ignowl r- rfnrrsvnt any of a variotv (J supplementary data

eathe-rsd ,;r)radi,,aj 1v on a hv-dm~and basis ty spcvial-purpose sensors.

r~.thi, intormat ion dcmw's not apiply to al L tLiicked obje-cts and is .%.

idritf-d jniv xvra -i,.nallv, it wokild ,r#,at( undierirable burdens on data

Fir '(--;sin I! in-(iruorared directlyv in the main diata store;, instead

'r m.'rtv I ist-ars" a, loc-ate-d dvnimicanlly w'heni and if needed.

Pillar - ir, A-,~ taker, tow mak, surf- thiat the ht-nchmarks were as 0

i .,r I -n t gi vn tric' -tacte rdr sinantic limitations

Tho r'' it i1g (Ii t 'i',renc s r: ipertfonnanco wirt as expected. LISP

! eArl v )t -p rr vrni PLs a I wh. n, , n*1uirnc. t,ap h i i t i eswere required,-

hi i lid ;)r ) v", wn a -z, N per. Il pa rad igri ffy mre appropri ate. Track

q iti t rn p-; an,)t 11., FA, situat ion where symboIi c process ing shoulId0

60-r



44 .. _ ..-. . .- - . - ..

emerge a clear winner since, as the OTI study pointed out, considera-

ble savings in calculation could be realizvd if closelv clustere d

objects can be treated as a single object for a'.ilvtical purposes

until such a time as their tracks diverge. On the other hand, cclnpu-

tation intensive tasks such as discrimination and calibration would

undoubtedly perform better as sequential implementations.

The solution is clear: real-time Al algorithms should be

developed for an implementation systen which allows a true combination

of sequential and applicative processing. We therefore propose a

strategy that utilizes available methodology to combine the two S

computational paradigmis. Since an implementation of' this type must

clearly bridge two distinct environments, the strategy is r,,terred to

as environment spanning. Although it represents a somehat radical S

departure from the typical implementation system, the description and

execution systems remain unaltered and no special equipment (,r

techniques are necessary to effect the change. S

Environment spanning begins during the initial program design ""

phase, when the implementation system is originally selected. The %.-

problem solution, rather than being expressed uniformly in terms ot a S

single paradigm, is partitioned into groups of subtasks suited to "--

stluential and applicative processing. The criteria for assigning an

activity to an environment will normally be those established in

previous sections, althouigh they do not preclude the possibil ity ()t

utilizing algorithms or modules which have already beeon implenent d s-"1
according to one paradigm or the other. The softwaro components from -

61

%*-...



4 7.77,77-7-. 1 %".A

a,-. %

*-%.

th w n irnet reutiito.itracduig-.)eo h

eniam n sa n n #.nd;d..rJ-, 1xI-w

a the two invilalnmrae alndiojtwev componaent uing tne pat

enwiorinent sphasin sird thesrievpodnn ofa uhelt eew.neu

4.3 EdnvionoSpning Lmoenil n apienatione- pn0sigcopnns

ariiironme wih '-cAring the prei;ets . vesof hential. ntou cmpt-o a,

the panviomnt t'- nl C-ry hat is, a(odx cifiuato inc whfc tismhwae .,

-nd/ore (' sotware )vth#,ri fin tor tc,vn rptperrnod4v The e Tpoentia

-A.

- 0Y



. - -..

The most straightforward environment spanning method is the-

d % .r

* simultaneous oppration of sequential and appl icAtive syvstems in a

*J. . .-

* ,-. -S

parallel architecture. Figure 12 illustratos thi type of configit-

ration; the arrangement is equally suitable when the applicative

environment is superimposed on a sequential processor. The components

are developed independently on the two processors and eventually

exchange signals and data via the communication channels established -

for the parallel systen. At least two symbolic processor manufactur-

ers are currently engaged in developing architecturs which combine

symbolic and sequential processors linked bv a common bus, but no

systems are commercially available at the present time. For this z."'z

reason, although parallel processing is conceptually the clearest form

of environment spanning, it cannot be considered consistent with our -

objective of staying within the confines of available+ methodoloy.

A second spanning mpchanism is implicit in rmultiprocessing on-

virorments (for our purposes, it is immaterial whther the processos

aro in fact executing in parallel or the concurrence is simulat,.-i). -

Here, as depicted in Figure 13, separate tasks are croated re-

presenting the sequential and applicative environmcents. Rpmote

activation and the passing of functional values are handled through

the semaphorke/mailboxing facilities of the underlying system.

Unfortunately, not all multiprocessing environments allow the

spontaneous creation of applicative tasks. In these cases, th, most

likely altornative is to construct the applicative environment a, .-

though it wore the only means of procpssing; then, using the,

63

-'. 5,



-f
CDP

0 .

E. 0

%0 e[V -%

~- 0 0a.

C5~ *flcCO)
LU0

z-

CE g Li
ccl-

C)%
C/):

w~

w

7 -C t.

E _)

L. I- S

Of 0-

ct6 z

cri S

C) S S. 5

5- - .- -st *~*~ S - -'5 '
* S ' * S S S S SI U)



cc S

O':_~

.. cr , .,. %1

Cl.,- c~ 0..e .

CD J 0i

0 E3 IV:
C3

0%

0. -w.

LL CO . -.

*D U%* -. 1

0~ x

z 0)

D V

C.)D

EE
c . U.. CC
0~ )

r o.

.4a-

65 JR

- "V



-- A S * S # -,. . . .. . . . . . . . . . . 7.7-77. A

i interequ rici n mt~lh~d dscrbo ricx t i nr~r vi s -uv, tial")dll

whic Pf~rti,4A spwvs h(; ,ic in enironi,- . Th i d 1

concrren pr~ce,;;,sng n a irnp ility.lk.

Th h dm~ o a opriuI urs-Im 1rtpe te
thantheabi i y fr on eniro~ver i.Iv~ie ceatrd i th

oth-r; this is tue f ric!F~ or-ra. ' ri tms -ich i,:, (rt ot

symblicand r,)edarl liigugp mplnert t on-; I terequnce

environment ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ A san g:salLh- ate r/osn ,vi. hc

dit*retlyI ivo-g mrodlesritte ci t , invo<'- syboi oru a procdul

Whhic of'~i' spawe three sectin is enviocmt.~ ThvI~ouydpend lon

thenaure pt te avaiabe hirladware Th atul mleenato

miThed thid he transpaen no tp rtlculd(' Sy' 3ifl ri ("fle±flto other

A- tait abrilit foi thae onini'rrie -,panin does' noete imos nye*-

e-nv iromen t spann' ngiv Istahl t!e me proe gmy, ofs~ conrse brhing ohnch

-P66



---- --...... .... .... .... ...

QP.

2. 1.? _j --

0 .. 
Se

0 E L 0

C.0 ca to0 ap

u- CD

CD 0.0 0

4) - iW
U).

~~~ I<~. .

67s ~

The i.ssue her(- i! to Qartitton progran act v- .te , not in order to-

di.stri h it e proc es. ing a c;,o l ing11 to any partic ular -,att vrn , bu t rat-. ," .Iw

to allow the. expression ano ultimate execu* 4on (it each tavk in the.".".

-. 4.-_.C,-

nvironmnt mK~st appropriate to it. Optimization i,...~a s limited . 4.

hv a combination of factors, each rplrtted to th, c;, mr,u~ational" ""-

the charactristics of each p)grii component and assigning it to an

avpmrpriat; processing evzvronment, the designer/ imp! tnen tor maximizes eP

th i- , ftt ctiv e.n s. of optimization ffort.s thrniih ot th o implement -" -"

tion solution ,tysth. i

%-.. w ..P

P-' "-A AA

, .° .. ',

•.44..-.

-% , %

4 ., .- .,,l w % '-- > ... ,-,. . . .,... d, . . -. ,., ,,- .% . . ' ' . 1 .. ,

a . -;v aJ J a.6)aata a -a ~ aa

J..6

4.

requres n ojectve ssosmen of he d ffiulti-.- intf-rnt i rh

tranitin fom robem cnc~tuaizaionto pysial f-aity Th

* %
esabi5e C ~()~~~n niooclusiin whc ' rrbt olto

The sctingent chonstresint imonfdonloic ting .vsottfs nthen

thatCi stng ,v h av t orpudthional prodgm which snacEon t'n- .

artficial nt adllence , cperuform an of algoritms he-citn wmle nd

eficetly sousningavall sytemsin and methdliea Thew answern oltin

in teurms anth obociven ass)(ee f opthe n di wiulich isnhreto prngrhm

ctatonto rom proble ccetalizfsi muatio nd mto hloca reality. Th'*p-(

.969

%~ ' ~ ~ ' .~~~5. - .- 5~ . -

%~5~

%

,Approach hv tre-ati ng nrogram svmb7 ,;s as refercences to storago

locations and 1, imi t i ig processing to the sequent i al)r (-'(di ti nal I 5

* ~~~(xc'it ion of basiv operations. In tr'trrs of pertoenarice ipm~~rt

the factors of greatest influence arv early bi-iding, w'hii-h poriis the

propagation (J valiies or a lorcal ,-n'-i/(-)r glohal 1'-vr4 to minimize

rocomnxtati()n, anid a he-avy d*ependence or, ir.era-tionr. w"',ch atiows the

movement of instructions fromr morfe to, 1,s3 frryurntly executed por-

* tions of thp control storo-. The major ohstarI's to ')ptirizatior aro

thie dang#-r.- posed by side effets and aliaqs~ng and the rdifficulty of

recognizing notvntiallv parallel operations.

The app] icaRtive- processing onvironmt-nt, on the other hand,

('XwnplifirPs the r.oiirsion theory ap~pro-ach toi comput'ir). itv, vipwing

control arid dat.a e~lemtnt'- unitormnly as values. A svnibolic language, 0

*which Pxnre-sses nrocessing in terms of functionai composition and

*recursion, is thr- most natural descriptiv- tooi tor this model.

Uinlike their sequential couAnterparts, appl icativo- programs permit no

* side e~ffec(ts or aliasing and posseoss an imnplici t concurrency whichn

make-s thtin admirabl- targsets for parallelization. Thoir dependence on .. *.

recursion and lat'- binding, howev'er, seriously hwnpers other attr~npts 0

at optimization.

I In t f-rms of the implementation of Al algorithms, neither 5'

s,;ri#ntial nor anplicative processing can 1)e spid to be unequivocably

-. jnorior to tho othv,'. Each A-oproach is inherently suited to a

smo i f i vsot o)t n r~h I f w a nd i nappropr ia te f or o t he-rs. This is '

r,.tlo-t-d in~ th,.- tact that virtually all existing algorithrms were

70 'a

dvlpdwithin a particular environment and that tran.st,)riation. --

from one to the other are difficult and generally inetficient. Th, v. e

issue here is not the promo)tion of particular la,•as mupls, on-

tation schemes, o)r ;ompu~tation sy.stems. It is, rathl~r, that thi';=

J. .1 .'
41

complex real--.time svstems required for Al proces,.sing in the BM/O 3 ...-.

setting coxmhinp .;omp intrin.sically se-quential t,,aturos with others "-"-

that are intrinsical 1v non-sequpntial . The u.se ot a homog,,n,,ous '

imnlfvnentation system is like choo~sing a browm instead ot a s hovel tor "--"

,*>~t ... ',

a Job that requires both: it can be done, but not efficiently. .''..

Spannin dissimilar environments facilitates prtram improvement

by allowing thc- assignment of subproblems on an individual hasi- to .''.

whatever .systfym offers the best chance for aut(inatfxi optimization. At-.-;,_

thf- sane time, the strategy takes into accnunt th fact that th

numbo r and speedi of operations may have less ett,,ct on performanc', -'' "

*% .'- %

than design factors such as how pattern data is .oneptual ized1 or-.

whih heuristics teid allocation acaticiar. A h terog,,neous

nvironment also maximizes this human optimization potental hy

allowin the dsigner/implementer to express each prolm in the most-

naturaI wa without undue concern for the xecution detais o

interacting s lutions. It is to be hoped that an algorithm which in ..-.

its entirety is too unwieldy for significant pert()rmanc,, improvvnont :::-...

ran he rduired to a tratible level hv this divid-and-cbnqofri

aprDro ch.•' ' ' '

% .

** * .-..

whateer sstem ffer thebest hanc for ut'nted~ptijnzatin.,A

the sme tme, he sratey taes ito acoun thefactthatthe

numbe andsperi of peraionsmay hve lss et.ct n p°"rfonanc

5.. ".'..°

naturl way withut udue cncernfor te excutio detals o

interating olutins. I is t be hped"tat analgorthm wich •

....',' .. its entirety. ..az. is, too. . .•. ,.. ... unwely.fr.i.ntiantptonane ipr..mnt- . -

,%%

, •- . .L.

.% %'. 1*

. -.%

References

P. Anklam, D. (Citler, R. Hpinen Jr., and D. MavLar-n. 1982. Engi- -

neering a Axnpil,.r: VAX-11 Code Generatior, and ktirmization. Bedford:
Digital Prrss.

[BrownniLth 841
J. D. Rrownsrnith and L. H. Oliver. 1984. COptirnizing Lbx-ps in Pro-
grams Cmpilod with the IBM PL/I Optimizing Compiler." ACM SIGPLAN
Noticeq, 19 (8):77-84.

[Bruynogh, 941
M. Bruvnoogho and .. M. Pereira. 1984. "Deducti ,i t ,,ision by In-

tplligent Baktracking". In J1. L. Campbell, ed. Imp!trnntations of
PROUrL. Chichf-st'r: Ellis Horwov. pp. 194-215.

C'artpr 821
% %

L. R. Carter. 19A2. An Analysis of Pas,:al Provrams. Cited in W. M.
. Waite and G. Goo<;, eds. 1984. Compilor Construction. New York:

Snringer-Vprlag. p. 354. .. '.

Wn1k 8a01ir
J1. Cocko and nJ. .ark;tin, 1980. "Mfeasurfynfnt oI' Code Improv(fnent
Algorithms." Information Procossing, 80: 221-228.

f~lcshoft 7' 1
,1. 1. Fi.shoft. 1976. An Analysis of 'rmt, Commrcial PL/I Programs.
IEEE Transactions on ,oftware Tnineering, SE-2 (2): 133-120.

0

[Gahriol 851-
r. P. Gahriel. 1 r,5. Pprtrranct ani Evaiuation of Lisp S'ystems. -

* Camhridgs- MIT !)russ.

fC olh-,,t 721
* P. C. ,oldb,.r t. 1972. "A Comrpariscr, of Certain Optimization Tech-

niqu-,. In R. Rutir-, rd., Desigr, and Optimization of Compilers.
FnvI wvd ('1 C t t Prortice-Hall. pr,. 31-50

72
•...

,,. 72 \,..--.% 1

0
% %

fKnuth 711 -b

D. E. Knuth. 1971. "An Fmpirical Study of FORTRAN Programs." Sott-

ware -- Practice and Experience, 1: 105-133.

[OTI 861

Optimization Technology, Inc. 1986. "Support ot the Militariz-d

Conputer Module Develorent". Unpublished technical rport prepared
for Control Data Corporation.

rRobinson 751-.-. " -

S. K. Robinson and 1. S. Torsun. 1975. An Empirical Analysis ot
FORTRAN Programs. Computer ,Journal, 19 (1): 56-62.

[Sarraga 41
R. F. Sarraga 1994. Static Data Flow Analysis ot Pl/I Programs with
the PROBE System. IEEE Transactions on Software Enginoring, SE-1.

(4): 451-459.

[Wulf 75] '.5. V

W. Wulf, R. Johnsson, C. Weinstock, S. Hobbs, and C. Goschke. 1975. -.

The Design of an Optimizing Ccrnpiler. New Yorl" American Flsevier. 1.

[Zplkowitz 76]
M. V. Zelkowitz. 1976. Automatic Program Analvsis and Evaluation.

Second International Conference on Software, Engineering. pp. 158-163.

%"%

73
% V,

-7'-7

-"V..',"

e, , . ,

5 , ". S,

5. , , - - - . .,- -.- --.. .. . -.- - -,V-. --

-- h .~ . % - %. -% ~ 0~ ~. - -~ t S%

% .

Optimization Techniques for Sequential Environments

The irnprxr,-,nsnt t-chniquies tvn.al;. appli--d tv c~trl;.sin

the sequont i 'i I nx i ronmert a,4,ium,, a h;. ckrt it, rlm~ iz;hlf/rutahl e

proeram organizati xn as dlicus';-i in Chapter 3. A1 r-dat,'d 1oSumEtion

is that t'lerv he- a -Ioar distinctiorn between symbhol-; referencing

orogram control tii ts and those def iring storp-g f~lfnfnts (program '

lata vs-r--oms problem data). Therefore, with few rxcf.T--'ns procedural 0

languages rrquire that usor--& fined symbols, or ide-ntifiers, be bound

to the appropriate location in the- control or d;.T-a '-;g-nent prior to - .-

execution. This nroperty, which allows ILhf ass-ocia±tion ot symbols to

locations through a static analysis of the pr ravr.. is called earlyP

h i nd i ng . a nd i - a major di f forence be tween sequential and non-

cvuential piYx-#-;siflg S

Prior to the- anplieiction of optimizing t ranslormyat ions, control *-

flow' and data flo)w analv i'- are porformned to estahl ish the semantic

frame~work ()r "maning") wtlich must be nre served. The ba-sic srinantic

elr-rent of a vrorrp,, which 9-c wili ,a[Z a logicLl unit, is; a maximal

('ol ti. instric.tio-ns in a t-ctmal scLjrj,,ce that are always

1"Earlv hindling is used here to indicate the pre-execution
ability to as-4ociito yb with ottsfets into a storage area. In the
s;trictest Srsloral variahies,. art- bokin dynamically, since the
s toragp are-a it.#, f is not allrocat.-d until the unit's prologue is
avt ivated.

74

J...

.'
.,% ,./.%

P.. .,

executed in order as a single entity.) This moans that no transfer

occurs to any instruction in a logical unit except the first and that %

once the first instruction is executed all others .- ill bo executed in

soluential order prior to transfer out of the unit. A program i A

divided into logical units by identifying the statrimnts which serve .

as entry (branch-in) and exit (branch-out) points.

In control flow analysis, the program is partitioned into

logical units and a flow graph is constructed whose nodes are the

units and whose arcs represent possible flow of control betw(n units.

The nodes are then grouped to form logical intervals, which represent 0

sequential series of units dominated by i single entry node, but

possibly having multiple exits. The importance of logical intervals

is that they may be "reduced" to single nodes to form a new flow 0

graph. This is then partitionod into new logical intervals which are

subsequently reduced, and so forth, allowing the, analysis of -- and

hence the application of optimizing transformations to -- svcc.s.sivflv

larger I)Ortions ot the program.

Data flow analysis is concerned with the legitimatf- ((wntigura-

tions of the data segnent. Since D can be representod adoquate ly h% 0

r,'cording the changes brought about in ach transition from Dn to ..

Tn+ 1 , the primary unit for data flow analysis is the state vector, %"

which lists those data elements whose contents are alte-red by th, S

1 logical units are- referred to elsewhore hv a variety ot namt-,.-

including basic hlocxks, logical blocks, and control groups.

75%

-. 75.. " -" ...

U Z

i nsruc. in coresondng t; t, ;t, Cnsoidaed sa'ovec~cr

1t rt.on jo corspoding t. t t t.'Gnsldedta ecc

* an Te isd ton whic*~t he roata 'o-crim tenn asoi tormih~c i-,-prveen

f 2n1 t rn nU-rva1Th otimiin pro rrrn foa ato- f iow ll a a pplie to.r

* trateon prhgam, s arve t(or of R~jeorin ~gi' totn): ral. tpe ,of

analys-is r~ur'-d ati aOtrplation. h Tis cnia~ fldbysions ?c cu

Theesin te tiin' io o hi h ow dmucr ii-frthefn' ctra !c- expect~eto

technoqes thaghthe app~ictio deo.ifo optinmizatons.~Drc~n

* o~~.1vTyicaOrtimiTzaotimiz-chiq rasfrnioAtpaiypledo

* or T'd!(ra jj-,!imi-,ari)n c hithgo re ao ring io th: foloin pragye ofl

analysis ~ ~ (2 rrlire fo (pi.cnttn-.nThisn is) foptimbyzastion of.

addren the quest of hn(c o ~muc peufohnia'esc Alhu xetey aro

imroethough rthel apicatin ofl~dr trier.iai og fortimizations. 0

oresunkoise, an 1c';et inm lvlr ofr cotoai doeata flom afalyss

Forit cofnec s h' aegrmeditofurgnearctgois 1.I

exrfsinF.mp~ti~t~n ()cc"'re~r~gcnot () ptmzaio7o6

If--'

A .

%

.-
W'

portra.ed using a sort of pidgin-Pascal, it should he clear that m"st

of the transformations are independent of any particular languagf -'.1

structure or level of implementation. In gen,.ral, individual

techniques may be applied at the local and/or global level; the degree'

of analysis required for global optimizations, however, constrains

their use in many settings.

The first class includes some of the most widely applied

techniques (see Figure 15). Intuitively, expression simplitication % ,

deals with improvnents to the way in which numerical computations arf- Z W%

specified. It encompasses a large subclass of tran,formations known

as "constant folding (also called compile-time, computations or
%%*.'* -' V ,

constant expression evaluation): the attempt to pertorm operations ,

whose operands and/or results are known at compile time b,.ause thN

involve numerical constants. A second type of improvement, "common

subexprpssion elimination" avoids the re-computation of values alrfady *",,.

calculated for some earlier operation. "Strength reduction" sub-

stitutes "weak" operations for "strong" ones to improv execi.tin

speed and/or make possible further optimizations; it include-s atttnnts '

to reduce the, processing needed to calculate- array oftt.ots. "otiNx-

pression reordering" takes advantage of corutativf, and associative

properties and algebraic identities to reduce tynryprarv storage- nee d.s'

and to facilitate other transformations. Finally, "value propagation" •

eliminates or minimizes the need for storage transfers by replacing

references to an identifipr name by references to its value. .e"

Th, concept of early binding is obviously crucial to th.s(, •

77 . -

i l lI

.77-7 77 J

ja. % 4

Techique T Exmpl

constant~~ foldin COST A

tam :-~* A*B

A shft(~l~t,4 % ~

subeon sta oing reorerin A - 5D

temp D- B

AF temt> 0 p

CHE CB e~
C LS C -er

Fitret reuci. ExmlsoA Epeso

SimpifictionTechique

78 %

a p .,.'r ",,-_

techniques. An optimizer which applies expression snpliticandins

must perform a detailed analysis of state vectors to deterrine, when a";.""

value is altered, as well as incorporate mechani'ns to r asscitating .. ' , ,

A, %algebraic properties with individual instructions. A specitl
transformation must normally be applied more than once and in !iii

alcernatinn with other techniques to be truly effectiv,.

The category of code rearrangement, as its name implios,

encompasses transformations designed to improve- the ordering of f.-"1%

instructions in the program's cnde segment; some common examples aref

illustrated in Figure 16. The movement of invariant expressions out

of loops, reordering of independent operations (statement flipping), .. -

elimination of induction variables, and hoisting of array oftset
,- -4 .

calculations from inside loops all represent optimizations commonly

referred to as "code motions". These techniques attempt to minimize

the frequency with which a given operation is pertormed and are

particularly important when a large number of array references ar,.

used, since offset calculations normally require costly multiplication "\-' '

operations. Loop reorganizations" (linearization, fusion, and

unrolling) reformulate loop structures by fully or partially expanding •

them to sequential form in order to minimize the niunber of tests and

branches needed to control iteration. "Boolean minimization" perform-s % "

a similar function by reordering comparisons in order to minimize

testing.

Other types of code rearrangement are- difficult to depict
'w" \ .%

graphically. Code elimination techniques rnov, redundant instruc- •

79 Nw,

w,'- %o

,. ., -
% %1

• -. -- o. - -'- - " -" , -~. . -]

9v...'.

.. _ _-. ." ,

Technique Example*

code motion FORI:-= N DO BEGIN

X :- A[NABS(-jU

FOP I - TO 14 DO BEGIN

-%S

AO I; :- TO DOBI %. -

FOR I :- 1 TO 10 DO BEGIN %-%
J :- I+4 - -"
X[I :" B11,J]

Y[1) : B[I, J-2]
END

FOR offset :-0 TO 36 BY 4 DO BEGIN

[X+offset. (B+offet+16 %
(Y+offset) [B+offset+Sl

END___

loop reorganization FOR I :- 1 TO 10 DO ,. %
FOR J :- 1 TO 10 DO .5...

FOR K :- I TO 1' DO
READ(X[I,J,K]) %

FOR offset :- 0 TO 996 BY 4 DO
READ ([x+offset])

boolean minimization IF A AND (B OR C) ,.' .

THLR X :- 10
ELSE IF B OR C
THEN X :- 0
ELSE X :- -10 5

IF B THEN GOTO Li
IF C THEN GOTO L.
X :--10: GOTO L3

LI: IF A THEN GOTO L2

X C; GOTO L3

L2- X :- 10 '5/f.
1 3.

The use c4 'of t' is an attempt to indicate the calcuation of array , ,

subscript offsets; a size of 4 bvwza per elem nt is assumed .

Figure 16. Examples of Code
Rearrangement Techniques

- ..

80
7-.V-...-,

• ', ", .-. '- '..','.:, _,',."..'-.'-," .,.,".,-X' .",">","-,€' -.' -'.,:,r' '.':4, : :.':,.':':*,".":",".:;. " ; ' ; ' r; : '- "" " " " " '

" ' ' l~ F+ lv r ",'O ',". m" - , ," "1. /" ' ' "*' " M I " ' IF " - m •m

.'-, .%, .%%

tions, such as the assignment of a value to a variable which is not

roferenced until after a further assignment. or unreachable (dead)

code positioned after a branch-out point but b,-tr',, a corresponding

branch-in. These transformations are often necessary after the

application of other improvements. Because ot the high run-time,

overhead associated with the prologue and epilogue- code- of procedure

units, some optimizers also perform procedure integration (in-line

substitution), which replaces each occurrence of an invocation by' a %

copy of the instructions forming the body of the subprogram.

The third class of improvements, data storage optimizations, 0

reorder the data segment to minimize program space r(quirlnents. The

information encapsulated in the state vectors allows the, identiti-

cation and elimination of useless variables, sch as unre-ferenced

identifiers or those rendered extraneous through constant propagation

or other optimizations. Live variable analysis revPals the, (effective"

span of individual identifiers so that variables with disjoint lite-

times may be overlaid in the same storage location. Time improvenents

can also be realized by reorganizing data elements to preserve -

boundary alignments which result in more efficie-nt data access or to S

take advantagp of reference adjacencies in ordr to minimize mf "-')ry-

page faults. I-inally, when performed in conjunction with expression

simplification, storage analysis allows the replacement of run-time 9

assignments of constant values by static (compile-time) initialization -

of the storage locations. . .

Target-specific optimizations are the most widely usod tech- 0

'%

0

e 0
%%

niquos since they arp often diL'eCtly in,,orporated in translation -

-, ,*.i.

mechanigns. The-sr- include the u:; of im r vement algorithms in such .

activities as registor allocation, target instructiun genration, and

instruction schtluling. "Peephole optimization". ' iea during the 1

" last stag-s of targr-t ,-ode g-neratisi analy7es short sequences of

, code and atttnnts to rcrdpr or eliminate instructions. For rxample,

multiple instrictions such as cascrdpd branches or recdndant condition _

t(ets can be cnmhinM1 into a single operation having the same effect.

Th, siibstitution of target-specifir instrnction! whic.h arrn shorter in
l'. tx'

format or excute faster is also of value at this lvv 1 . •

In summary, a wide rang- of techniques has ben established for

ontimizing programs in the sruential processing envi o)nment. Unfor- %

tunatelv, srne of the techniques are self-defeating -- if not actually _.0

contradictory - when used in conbination with others. An optimizer's -

ettetivenrss doends to a great extent on the succ(.esful interplay of . .

a varipty of ttechniques. Most existing versions Iimit their activi- S

ties to a relativolv small nuwntr of transformatlons sharing similar " "

analysis net.d-s and having significant impact on whatever types of --

i npuit programs are iecnwmd typical.0

A.2 Po~tontial fr,, ion~ '-..".

Al thnii., ;'pt imi '.i.;' I eOi rs of varyi ng degrees of sophisti-

ration have ben available for twenty vears, th-re are few empirical

stulies indit ating ,.) wh%-a d,-gret, they can improve performance. As-.p.@

2 • %*.'A,

Z

,. w ' %'

.. *.~' .* * ... -''d.'-' . -.' f% \ pP'P * p %*P %%V %" . %(N- % V

i .

mentioned in Chapter 2, the first difficulty is ostahli.shing Just what -

to measure -- i.e., what constitutes an average program, av(-rag(-"._

run-time load, average input, etc. A second problor. is how to isolate,,_ .

the effects of a particular improvement when the interaction of fat

transformations is so critical to their success. The isstv is f urther .@ .

JW .41

complicated by. tho general inadequacy of available methods for

measuring run-timp behavior and the unintelligibility of the result.s. 0,
In short, the literature is full of refe rences to optimization te ch-

niques but there is a noticeable lack of correlation between theory '

and practice, and few statistically significant findings. 0

-=.-~ '.4

Knuth made the first attempt at compilin program statistics.

when he compared FORTRAN code written by Stanford students with that . %'

of Lockheed programmers, using both static and dynamic analysis

- ~techniques. This study (Knuth 711 remains one or the most ,extonivf, •-

' ~to date, but the results are of questionable use because of' the hoavy ,

bias due to the syntax of early FORTRAN. fElshoft 761 and [Sarraga. '0

"44o-.

941 performed similar analyses of General Motors programs writt#,n in ...

PL/I, while [Robinson 751 and [Zplkowitz 761 provide the, best examrnlos .-.-

to date of academic programs (written in FORTRAN and eL/I, rs-spo-•

4% -° -

tivoly) Since reasonably scaled analyss of other programming .%.--P,

languages are not available, only those findings relevant to gierally

applicable optimization techniques will be cited here.

The mostly widely quoted statistic is Knuth's "90/10 rul"

which stated that 90 n of total time was spent excuting mJust h0 ot a

nprosram't statements. Input/output oprations were found to cons th

83

nius|tteei ntcal ako oreainbtenter
and pactie, an fewstatsticaly sgnifcant indigs.

Knuthmadethe frst ttemp at ompilng-pogramstatstic

an inordinate sharo of pry)cessing, with 5% of thie c, -'47 a(cctunitirn tor -

mrt than 2.5% t,f meas ured time. In terms ot non-1/O ende, under 4T %_-

"IN-

, o (c eupied 50% of oxecution. Tia ce t igLirs imply that Signitirant ,,."%

•

i improvement might be r-aLizoPd if ,5ptimizing Pf ,~ can tieconcen-

I" i trated in the propr areas."'::'"

Sam,, of' the statistics pr,_,v ,l b,-. static a,-alysi.-. art, less .' ''

oncourain. (Knuth 711 fouind that 68% o)f a5-signmer~t stat-,rnoent~s were

• ~..

aimnlo rplatieants which conied a value, of- r 1 %tn anter; to"

thoere an f we confired by r Elshof f 76, nho reported 77.6% and

cp40d, rf5noctivl. e sne stirce cite an additi ;h] .s, 21%, and

2 as assignmnts h rnvlvin the evluation of no more than one

onSrator In tems of optimizatcs pr kialb tai indicates that"

oFven sophisticated xrfossion simplification techniques may have

negligihlp ffects on performance. his vie is (()nirmed by another

,-
r0% rher Ctier 82. ho soun a mices t an~k adin Pasca .progrand

included only two to for assignments and opmr than two common

uboxprssion. It sems realisitio estimate that while expression

v simplification !tnd ,(I rearrangmont might ,;av- iip to thremuarters %

of the tim r sent ,y numerical cnputatm -intensive programs, the

same tfochniauf-,4 w(-);ld pronto;y sh w little of(--ct on non-numeric --. ,

Ticd olimnt.n t redunda t assignments andw useless variables

sexrss)ro p . itsing. relshoff 761 r pored that of 384 identifiers

in an avprago Drograzl, 10"1 w'r- unr,4 -#mnced. [Sarraga 841 perfolted

a partial analysis of viriable use which indicated that s e 5% of

84. %

ot

6, ,
%N ' "% " '- '- 'w • - " .'" ,/" % r . ' "# " ," ' ' % " - - " "€ - '.- . " " -. " " ,r - ,r ¢ . . ,r .- -. " -

SS

%

assignments were useless. At the same time,, other I igurs c(J(lpi le4 by

Elshoff underscore the difticulty of performing the, global data tlow

analysis needed for this type of optimization: h-, t1oind that 13r of"* ' -

the gaps hetwen s.uccessive references to a single ide.ntitier we r .

more, than 100 statements in length. .. r

The implementors of optimizing compilors have on occasion putb-

lished data indicating the de-gre of impr)vcient measured by applying

varying levels of optimization. Figure 17 illustrates tha r-s ults

cited by [Cocke 801 and (Brownsmith 841, cornpar, d with the improve-

ments implpmented manually by [Knuth 71]. The ef'fects of the

language-independent VAX-l back-end optimizer designe d by [Anklam 821 "-

and currently used by the PL/I, C, and PEARL compilers, -presento-d in '.

Figure 18, were measured by inhibiting individual transtormations on a S

series of benchmarks. [Wulf 75] attempted to quantity the e-tffet on

performance of each optimization performed by a Bliss-li compiler (s(':'

Figure 19); th, intention was to derive a formulIa expressing the, S
€.S 22"

cumulative result of varying c(,lnbinations, but this did not pr,,vt ti)

be practicabl,.

As the t iires show, there is a significant range in perfonce

from one optimizer to the next and fromn one benchmark to another. In

'asome cases the effects of individual transformat ions ilmo~st e-scap*'

measurement (the effPcts of loop invariant relocat ion and suh,.x-

pression elimination on benchmark AB-5 in Figure 18, for exampl.),

whi I- in others efticiency incrtasos dramatically with the addition o)f -a-N

a single technique (e.g., the etffoct of loop invariant relocation on -0

85

, ~.,. ' ,,,%...

' '- - , ,'# ' , . . '., . ' ,' '.'.' ."" . *. " -'. ,--,p.---. 2* .~* ~ *' *. - ". '. . - . 'a '- t- 'ar ,

. -

%S

*Ile

4., .,4

" " Level of Parforrmaonce """"
Technique Measure ""-"

Minimum Average Maximum ,..

Local Optimizations 1

Knuth time 40% 71% 91%.

"Cocke time 32 so 72 '

.4 44-. ,5..,

4? 54 69

." Brownsmith lime t563 99 '

.....

"" Local plus Global
°" ~~Optimizations - "/.

4',

":"Knuth time il I 8. 91"' -

., ,.,-

Cocke time 19g 42 61

.p. ,,=-.

-- " Space 38 5s 66,....:
e1 Included lcal constant propagation, elimination of dead cde, and

local register allocation optimization "-a'*.p.

::: ~2 Added global constant propagation, strength and frequency reduction, """,,,
and global register allocation optimization

Figure 17. Estimated Effects of Optimization

:. .- ,-::
-ptimi.a-ions 2 .-

Knuth time-:- -:.
4. 91%l,

Coc,. time 19.42
I I %" .* %*

__ _ __ ce 3 5 ?,6'

__ _ _ __ _.

I
p

4

AS-1 AB-2 AB-3 AB-4 AB-5 AB-

With allopti izaions ------------

No daa stoage I
register

No daa stoage oerlay

No loop nvarian

Witeehle optimization

0_10_20_30 _40 _5 _60_70 80 90 10

EfeoctsfOpiizto

No suexprss87

- - , J .d'd *. * .- " .. ,_

••% .%.

T technique Fctr ?.*

~Constant folding 0.938

Common subexpression .--. ,.
elimination ,-"-.

~~- statement level 0.987 --4 -

; ~~- local kr~l 0.973 '*.-'-;
2" ~~- global level 0.987 .., ,.:r

Algeb~raic la- 0.975 ;-""

-, ~Code moti 0.985 ,

r ~~Elimination of dead code 0.98,.- '-,

Register o=;ocation
local 0.98]7 . .

, -~~glow: 0.975''-"" -"

Cross jumping 0.972, '" "".. '

Peepho;e optimization 0 8 8- ..,.-

: ~Figure 19. Wulf's Quantification of "'''
: ~~the Effects of Optimizing Techniques ::::::

8p 8 .

**}4*

• o " a .

138 ""
S ."# .

< °° ooS

AB-4 of the same figure). The extreme variability of these results

%illustrates the difficulty e1 realistically prec~ting the effec('ts of ,.

isolated improvenents. %

No discussion of optimization would be complete without mpntion 4

of parallelization. Recent years have seen an increasing interest in

the development of translation algorithms for converting sequential -

programs to versions suitable for parallel procossing. Availablo

methods evolved from data tlow analysis techniques and focus on array

operations and looping structures as the primary candidates 1()r -

parallelization. For example, the loop distribution algorithm for

extracting parallel code assigns individual iterations of a loop to

different processors. The pipelining algorithm, on the other hand,

splits the loop into several component suh-loops, each of which is

then assigned to a processor. In general, loop distribution is

preferred wj,pn the loop body is small and the number of iterations

large; pipelining is employed when the proportions ar, reversed.

Unfortunately, a substantial amount of analysis is r,,qui red to

implement th(-se techniques, nor are they unitormly applicable to all

types of data elements and looping constructs. Furthermore, no

conclusive empirical studies of the degree ot imnrov(nent r.aliz .

through parallolization have Emerged to date.

89

..................... o

R-M192 046 IMPROVING THE PERFOANANCE OF R' ALGORITNNSCU) MODURN 2/2
UNIV M. DEPT OF COSMPUTER SCIENCE AND ENGINEERI NG
C N PUICAKE SEP 97 SCEE-PDP/85-46 RADC-TR-97-13i

m m ml9--99 FO129N

i

I
1.0 It"

L-2 112.2

11.6

111125

MICROCOPY RESOLUTION TEST CHARI

%2

* - 4-

Appendix B

Optimization Techniques for Applicative Environments

As Pointed o~it in Chapter 3, optimization,; based on normal

control flow and data flow analvsis are inappropriate in non-

snruential environment.- and few optimizing transformations have as yet

boen developed specifically for applicativP processing situations.

Thos- that are available can be genorally categorized as affecting

either eiihstitution or simplification activities.

The following sections discuss optimizations currently im-

plementrd in applicative environments. As in Appendix A, available

techniques are described in general terms and then the results of __

studies examining the effectiveness of improvement activities are %

presented. '. *d'-•%

B.1 Tlpical Optimization Techniques

Substitution activities are optimized by improvements in heap

storage managefnt. A heap is difficult to implement efficiently,

si nr i t requ i ros th.'tt a large, gen,-ral-purpose storage area be made %

availAble for us- on an unstructured, by-need basis. When a program

,lemnt is dtined, snace is allocated to it from a free-space list ..

and ass.ociated wi th the corresponding symbol by means of one or more

l-vfl. of point.srs. If the element is subsequently redefined, the .- ,

90
% % .NN.% *

:Z

pointer or chain is altered to point to a new location. Note that -

there is theoretically no limit to the number of pointers which can

reference the same object. The term garbage rif ris to a location

which is no longer referenced by any pointer, and should therefore be

placed on the free-space list. A dangling reference occurs when the

object is returned prematurely to the free-space list, Pven though one

or more pointers still refer to it. Traditional heap storage systems

avoid dangling references by creating a unique object at oach

definition. This allows garbage to accrue rapidly; when the

free-space list is exhausted, computation is suspende-d while a garbage 4

collector searches the heap area, identifies garbage elmnents, and

returns then to the list.

Garbage collection is clearly an attractive candidat, for opti- L

mization. Established techniques include the use of hashed reference- %k

count tables to keep track of active storage and/or the subdivision of

storage into static, read-only, and heap areas, which sormvhat roduces

the area to be collected. Incremental ("on the tlv") collection

processes a small section of heap storage ,ach time a sppcitic

operation is performed; this distributes the overhead more evenly over 0

time but requires more space than other m(thods. "Compile-time

garbage collection" attempts to replace some operations which create

new definitions by altering the pointer lirks, but destructive changes

of this type do not preserve equivalence with respect to multipl, %

pointers referencing the same object. ._"V

91

A second type of optimization related to substitution is

peculiar to LISP-based implementations. Most versions of LISP ac-

romwodate one or more special types of dynamic or "fluid" variable

binding. With traditional binding (deep bLinding), eavh Lime the fluid

variable is bound a tree of -symbol tables must be searched to find the

current value. The, observation that the number of rehindings is small .

compared to the magnitude of the search led to a technique called

shallow binding, whereby a current value cell is maintained for each

name. The old value is stacked whenever a new instance is bound so

that it can be restored easily when needed.

Additional techniques have been developed to improve simpli-

fication activities. Open coding involves the in-line expansion of

common primitive functions and/or conditional structures (similar to

procedure integration in the sequential environment). Calling

sequence improv-mpnts are designed to expeditp linkages between

subprogram units. These make use of .jump vectors, lx-al branches, and

l inkago tables to eliminate calls to primitive linking, routines.

A related method of diminishing simplitication overhead is the

removal of recursion. This is appropriate when the recursion is

duplicated so that the sawo values are cnmputed more than once; such

techniques are similar to those for lazy evaluators (see below). A

second use is in functiotis with "tail recursion", where the recursion S

is the last a-tion o the c:urrent invocation. Since there is no need

to .tahlish R n,,w application frame, the recursion is replaced by

wm1 forn of onmn crixn. S'

c.92

RVM k -

Other schemes improve the ways in which parameters are- passed-

between functions, in an attempt to decrease the number of times a

symbol is evaluated. Parameter rearrangements rw)rder argumonts or

place them in registers or on special parameter stacks. Call bY name

delays the evaluation of parameters until they are actually required,

while lazy evaluation (call by need) maintains a table of values to

avoid duplicate evaluations.

Arithmetic operations in the applicative environment are .

complicated by the need to convert numeric values to and from pointer

representations. Common improvements include storing the valus in

registers, on special numeric stacks, or in table,. The complexity of .

numeric operations has also led to techniques similar to those used by

sequential optimizers, such as constant folding, rearrangrment, common
*,I?

subexpression elimination, and peephole optimization, but on a

considerably smaller scale.

In summary, although some optimizations have been developed tor

the applicative environment, they are not as well undvrstood as are

the techniques discussed in the last chapter. Few compilers attmpt

to incorporate morf- than a handful of improvrments and their inter- S
J. 4.

relationships are only hazily defined. The most discouraging fact is

that only a small percentage of existing implementations offer any

significant degree of optimization. •

93%

N ,,

3.2 Potential for Optimization

For the reascns outlined in previous sections, it comes as

little surprise that no empirical studies of statistical significance

have as yet appeared to establish the effectiveness o[optimization in

the applicative environment. Most recent rosearch efforts have been

directed instead to the development of architectures which process

applicative programs directly rather than via software simulation.

One recent study, however, compared the performance of a series of

LISP implrnntations, including same employing improvement techniques

(Gabriel 951.

Figure 20 summarizes the results of the Gabriel study on three

systems using a Franz Lisp compiler. The only optimizations described

are calling sequnce improvements: the use of a J(ump)S(u)(routine)

'5 instruction to rrform direct jumps to functions included as part of

thp same compilation unit, and the incorporation of a transfer vector

to replace the invocation primitive routine. It should be noted that

all of the benchmarks tested were ta.k-specific, and therefore are

subject to the biases described in Section 2.2.

The results illustrate what appears to be a chronic problem with

applicative optimiz.tions. Although quite substantinl improvements in

run-time behavior are noted for some tests, performance is actually

degraded in other (.ases. (Bruynoogho 841 reports similar results for

the application to PRO.OG programs of a technique called "intelligent

backtracking". His tests were nn on typical smallscale Al problems,

with r,,siults that ranged from 0.3 to 219 (with an average of 112)

945" . ,

Benchmarks Level of Performance
Minimum Average Maximum

Recursion1 -m
VAX 1I/750 13% 32% 69% J

VAX 11/780 13 29 60
Sun I 16 37 69

Knowledge Base 2
VAX 11/750 15 31 46
VAX 11I/780 14 31 47
Sun I1 18 37 56

Trees 3
VAX 11/750 15 53 80
VAX 11780 14 52 81
Sun I 15 51 75

Searching 4
_

Sun 0 99 99 99

VAX 11/750 98 101 105
VAX 11/780 100 101 102
Sun N 99 109 126

I--

Garbage collection was excluded from the time calculation
Included the Tank, Stak. Ctak wnd Tald benchmarks

2 Boyer and Browse
3 Destructive. Traverselnktlalization, and Traverse
4 Puzzle
5 File Print. F'd Read, Terminal Print

-0..- U,:

Figure 20. Gabriel's Benchmarks
on the Effects of Optimization

95.. ,
:, .. '

- - '". :: - -.. %'.I I I -I.. ~ .. * . . . 0

percent of the time required for the unimproved versiuns. This

clearly violates the fundamental rule that an optimizing transtonna-

tion be guaranteed at least not to adversely affect performance.

The shift from sequential to non-s quential architectures, on

the other hand, strmns encouraging. Any program performs significantly

better once the software interpreting layers are eluinated frin the

applicative environment. The incorporation of parallelism will

undoubtedly improve this situation even more, since the locality of

-ffnct and referf-ntial transparency properties of symbolic programs

make them apt candidates for parallelization. Furth rmore, the

"generator" primitives of the functional languages (e.g., the MAP

routines of LISP) are implicitly parallel constructs which can easily

be adapted to concurrent processing situations. Finally, garbage 0

collection activities have already been targeted for implementation on

separate, dedicated processors, with the promise of substantial im-

provfrments in ixe.ution time.

%'

,96
- ." 5.

a=,

-. S

Distribution List
S

Donatd J- Gondek 8

RADC/COES

RADCIDOVL
GRIFFISS AFB NY 13441

--- '4...

RADC/DAP
2

GRIFFISS AFB NY 13441

ADMINISTRATOR
12

DEF TECH INF CTR
ATTN: OTIC-ODA
CAMERCN STA 8G 5

ALEXANDRIA VA 22304-6145
,,

RADC/COTD 1

BLDG 3, ROOM 16

GRIFFISS AF8 NY 13441-5700

,...,*-*
-'..,:., .-

HQ USAF/SCTT
"-"- "4"-

WASHINGTON DC 20330 * ,..4.

DIRECTOR I..

D MAHTC
ATTN: SOSIM

@

6500 Brookes Lane

WASHINGTON DC 20315-0030

OASO (C3)0 INFORMATION SYSTEMS
2

ROOM 3E187
WASHINGTON DC 20301-3040

HQ AFSC/DLAE
-

ANDREWS AFB DC 20334-5000

DL-1

2!2!rz-- P0

N1O AFSC/IXRK

ANDREWS AF9 Nd 20334-500

NO SAC/NRI (STINFO LIBRARY) 1
OFFUTT AF8 NE 68113-5001

NO SACIStPT 1

OFFUTl AFS NE 68113-5001 '

"-.',

H ESC/OOOA 1

SAN ANTONIO TX 78243-5000

T IF I* DI)*,,,,

TAFIGIIIDD
ATTN: MR. ROBERTSON
LANGLEY AF3 VA 23665-5000

NO0 TAC/DOA (STINFO) 1

LANGLEY AFS VA 23665-5001

, '- . -'.

,' . ..,..HQ TAC/OP CC. ,.

LANGLEY AF8 VA 23665-5001, -..

NO TAC/lRCT 1

LANGLEY AF9 VA 23665-5001

U"
i

DL-2 ,k -. -

.4vll~~ %;N;%Zy.q t*.t -. -,f * - . -•%

H2 AFOTEC (OAWD) 1
At tn: Capt. Novack) r.%
KIRTLAND AFB NM 87117-7001

ASD/ ENEGA I
WRIGHT-PATTERSON AFB OH 454*33

.%, % -,,, , ;

ASD/AXPN -
WRIGHT-PATTERSON AFS OH 45453

ASOI AFALC/AXAE

WRIGHT-PATTERSON AFB OH 45433

AFITILDEE - TECHNICAL LIBRARY "
BUILDING 640* AREA B
WRIGHT-PATTERSON AFS OH 45433-6583

AFWAL/FIES/SURVIAC I
WRIGHT-PATTERSON AF8 OH 45433 '.a

AFAMRLIHE I
4R1GHT-PATTERSON AFB OH 45433-6573

e
, %,. -,J-J

7C. v-*l

AFHRL/LRS-TDC I
WRIGHT-PATTERSON AFS OH 45433-6503

Area A Technical Library .
2750 ABW/SSLT
Btdg 256o Rmt 20?. Post 20311
Wright-Patterson AFI OH 454433

DL- 3

% ,*. ..

AFHRL/OTS -
WILLIAMS AFI AZ 85240-6457

1843EIG/EIEXN 1

WHEELER AF8 HI 96854 ..

AULILSE 67-342 1
MAXWELL AFS AL 36112-5564

HQ SPACECOMIXPYX 1
ATTN: DR. WILLIAM R. MATOUSH
PETERSON AFS CO 80914-5001

HQ ATC/TTQI 1
RANDOLPH AFB TX 78148

HQ ATCITTQE
RANDOLPH AFS TX 78148

.% -,.-

CODE N396RL TECHNICAL LIBRARY 1
DEFENSE COMMUNICATIONS
ENGINEERING CEKTFR
1860 WIENLE AVENUE
RESTON VA ?2090

COMMAND CONTROL AND COMMUNICATIONS DIV 1
DEVELOPM4ENT CEhTER "* "- d

MARINE CORPS DEVELOPMENT EDUCATION COMMAND ' ''"

ATTN: CODE DIOA
QUANTICO VA 22134

A FLMC/LGY
AT TN: CHi SYS ENGR DIV
GUNTER AFS AL 36114

DL-4

• . . I • .• " " " " " q • , % % " " q " " -. °. " - '- S %

COMMANDER
BALLISTIC MISSILE DEFENSE SYSTEMS COMMAND

ATTN: DASD-H-MPL
PO BOX 1500
HUNTSVILLE AL 35807-3801

COMMANDING OFFICER 1

NAVAL AVIONICS CENTER

LIBRARY - D/765
INDIANAPOLIS IN 46218

COMMANDING OFFICER "

NAVAL TRAINING EQUIPMENT CENTER
TECHNICAL INFORMATION CENTER

BUILDING 2068
ORLANDO FL 32813-7100

COMMANDER 1 , .

NAVAL OCEAN SYSTEMS CENTER
ATTM: TECHNICAL LIBRARY* CODE 9642
SAN DIEGO CA 92152-5000

% ,%. .

US NAVAL WEAPONS CENTER* CODE 343 1
ATTN: TECHNICAL LIBRARY
CHINA LAKE CA 93555

SUPERINTENDENT (CODE 1424) 1
NAVAL POSTGRADUATE SCHOOL
MONTEREY CA 93943-5100

CO ANDING OFFICER .
NAVAL RESEARCH LABORATORY .. ,,
CODE 2627
WASHINGTON DC 20375

NAVELEXSYCOM 1..

PDE-110-33
WASHINGTON DC 20363

.' .-5 .

DL-5 " -" '.
* *'.% -p

*. -p

. ,, .;,, ,

'% ,%.%1

REDSTONE SCIENTIFIC INFORMATION CENTER 2
US ARMY MISSILE CO1MMAND .,

REDSTONE SCIENTIFIC INFORMATION CENTER
ATTN: DRSMI-RPRD
REDSTONE ARSENAL AL 35898-5241

Advisory Group on Electron Devices 2
Hammond John/Technicat Info Coordinator
201 Varick Street* Suite 1140
New York NY 100114

UNIVERSITY OF CALIFORNIA/LOS ALAMOS 1
NATIONAL LABORATORY

AT TN: DAN BACA/REPORT LIBRARIAN
P.O. BOX 1663* MS-P364
LOS ALAMOS NM 87545

RAND CORPORATION THE/LIBRARY 1

HELFER DORIS S/PEAD TECH SVCS
P.O. Box 2138 a. ,

SANTA MONICA CA 90406-2138

Commander I
H"G, Fort HuschucS _

TECH REF DIV
ATTN: BESSIE BRADFORD -'a

- Ft. Huachuca AZ 85613-6000 -

AEOC LIBRARY (TECH REPORTS FILE)

"S-100 ".'
ARNOLD AFS TN 17389-9998

d. - •a''

IIJ T IP --.--

Attn: TechnDc€i Director
1500 Ptonfing Research Orive

McLean VA 22102

AWS TECHNICAL LIBRARY I

F L4 414
SCOTT AFe IL 62225-543R ""J

'85 EI(/EIER (OMO) 2-
GRIFFIS AFS NY 13441-6348

DL-6

VV,,,,

HQ ESD/XRX 1
HANSCOM AFB MA 01731

--

E S 0/ I C P
HANSCOM AFS MA 01731-5000

ES D/XRSE
HANSCOM AFS MA 01731-5000

ES/TCS-1 D 1
ATTN: CAPTAIN J. MEYER
HANSCOM AFB MA 01731-5000

The Software Engineering Institute 1

At tn: Major Dan Burtono USAF
580 South Aiken Avenue .,,..
Pittsburgh PA 15232-1502". "

DIRECTOR 1

NSA/CS S
ATTN: T5112 /TDL (MARJORIE E. MILLER
FORT GEORGE G MEADE MD 20755-6000

* ,%'%_ .1
*. ,.-. *

DIRECTOR 1

NSA/CS S
ATTN: W161
FORT GEORGE G MEADE MD 20755-6000

DIRECTOR 1
NSA/CS S
ATTN: R24

FORT GEORGE G MEADE MD 20755-6000
.' , 3. -"

DIRECTOR 1
NSA/ CSS
ATTN: R31
FORT GEORGE G MEADE M 20755-6000

DL-7 of* "

_ 7 *n- ' ?

DIRECTOR
NSA/CSS
ATTN: RS
FORT GEORGE G MEADE W4 20755-6000

DIRECTOR

NSAICSS %

AT TN: R8 ,K ..
FORT GEORGE 5 AEADE Pd 20755-6030 *V.'.

DIRECTOR
NSA/CSS
ATTN: S031
FORT GEORGE G MEADE NO 20755-6000

9

ATTN: S21 ..',' !
FORT GEORGE G M EADE NlO 20755-6030 -

DIRECTOR 1NS A/CS S

ATTN: V307
FORT GEORGE G WEADE PD 20755-6030

RDoD COPUTER SECURITY CENTER,AT TN: C4v3T0 I

9830 SAVAGE ROAD
FORT GEORGE G MEADE MD 20755-6000

AUBURN UNIVERSITY S ,-.- l-
DEPARTMENT of COMPUTER SCIENCE & ENGINEERING

107 DUNSTAN HALL
AUBURN UkIVERSITY* ALABAMA 36849-3501 r t.. .t.-

ESD-MITRE Software Center Library 2
% 14% J.A. Ct-po
MITRE Corp 0-70 M S A-359
Surtlnqton Road
Bedford PA 01?3,-

DL-8 0

PIP I N P

Software Engineering Institute Tech Library 2
Carnegie-Metton University
Pittsburgh* PA 15232
ATTN: Korola Fuchs

Cot J. Green
Dir, STARS JPO
Re C-107
1211 South Fern Street
Arlington, VA 22202

SDIO/S-8P (Lt Cot Audrey)
The Pentagon
Washington DC 2C301-7100 9

SDIO Library1
IDA
1801 N. Beauregard St
ALexandria VA 22311

SAF/AQSD (Lt Cot Harry Rosen)
The Pentagon
Washington DC 20330

A

AFSCICV-D (Lt Cot Ben Greenway) 1
Andrews AFB 40 20334-5000 \.N ,

HQ SO/XR (Col Peura) .
P0 Box 92960 -
Worldway Postat Center
Los Angeles CA 90009-2960 A6

SD/CN (Cot Wilkenson) 1
PO BOX 92960
Wortdway Posta(Center
Los Angeles CA 90009-2960

ESD/!OD (Col Paut) 1
Hanscom AFS MA 01731-5000 %

DL-9 DI -g S

%- ° a -J

0--

AFSTC/XLX (Lt Cot Oetucct) 1 -W
Kirtland AFS NN 87117 ,

USA SCC/DASD-H-S (Larry Tu~bs) 1
PO Box 1500
HuntsviL te AL 3580?

ANSER Corp I

Suite 830
Crystal Gateway 3
1215 Jefferson Davis Highway
Artlington VA 22202

IDA (Albert Perret ta) I
181 N. Beauregard Street
Alexandria VA 22311 % Z-

A ." ,

AFOTEC/XPP (Capt Wrobet) "
Kirtland AFS NP 87117

AF Space Command/XPXIS 1
Peterson AFB CO 80914-5001

S0O/S-OW (Capt Hart) '
The Pentagon 0

Washington OC 20301-7100

SDIO/S-8P (Maj James Price)
The Pentagon 0

Washin~ton CC 20301-7100

r, . ,-.
, . \...'

SD1O/S-Hp ("4j Sowa) 1'-
Thep Pentagon

Washin;tcn DC 20301-7100

DL-10

0 '"f, r-
* ..*.r. .

SD/ChII (Col Hohman)

PO BoX 92960
Worldway Postat Center
LOS Angeles CA 90009-2960

SD/CNIS (Lt Cot Pennetl) 1
PO Box 92960
Wortdway Postat Center
Los Angetes CA 90309-2960

S D/CNWICWXICNB 3
PO Box 92960
Worldway Postat Center
Los Angetes CA 90009-2960 ,,4

ESD/MDS (Lt Cot Otdenberg) I
Hanscom AFB RA 01731-5000

ESO/!IDN (Lt Cot Leib)
Hanscom AFB PA 01731-5000

DIR NSA (V42 Maj Morgan) I "*
9800 Savage Road
Ft George Meade MD 20755-6000

- * .' * '

*.99.; .9.9

.. p. *

~DL-11
-9ILI

-- N.. b

wcb

